Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biomech ; 139: 111139, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35609493

RESUMO

The purpose of this investigation was to compare how key variables of the steady glide phase relate to performance in the two hill sizes used in World Cup and Olympic competitions, i.e, normal and large hills. In this study, 38 and 33 jumps of elite ski jumpers were measured with a differential global navigation satellite system (dGNSS) on a normal (HS106) and large hill (HS140), respectively. For the steady glide phase, the average aerodynamic forces, lift-to-drag-ratio (LD-ratio), vertical and horizontal acceleration and velocity were measured and related to the jump distance as a performance outcome. The aerial time difference between the two hill sizes was 1.1s, explained by the time spent in the steady glide phase. The results for HS106 were in line with the assumptions in recent literature, which propose that the performance is largely determined by the take-off and glide preparation. Hence for normal hills, skiers should aim to reduce vertical acceleration through high aerodynamic forces during the glide phase. Also, no correlation was observed between the LD-ratio and jump length. The data from the large hill indicate that the performance during the steady glide is very important for performance; hence clear differences were found compared to the normal hill. On a large hill, the aim should be to minimize the horizontal deceleration by reducing the aerodynamic drag. A high LD-ratio was correlated to jump length for HS140 and seen to be one of the most important performance factors.


Assuntos
Desempenho Atlético , Esqui , Aceleração , Fenômenos Biomecânicos
2.
Front Physiol ; 9: 1203, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30214415

RESUMO

In this study we present and validate a method to correct velocity and position drift for inertial sensor-based measurements in the context of alpine ski racing. Magnets were placed at each gate and their position determined using a land surveying method. The time point of gate crossings of the athlete were detected with a magnetometer attached to the athlete's lower back. A full body inertial sensor setup allowed to track the athlete's posture, and the magnet positions were used as anchor points to correct position and velocity drift from the integration of the acceleration. Center of mass (CoM) position errors (mean ± standard deviation) were 0.24 m ± 0.09 m and CoM velocity errors were 0.00 m/s ± 0.18 m/s. For extracted turn entrance and exit speeds the 95% limits of agreements (LoAs) were between -0.19 and 0.33 m/s. LoA for the total path length of a turn were between -0.06 and 0.16 m. The proposed setup and processing allowed estimating the CoM kinematics with similar errors than known for differential global navigation satellite systems (GNSS), even though the athlete's movement was measured with inertial and magnetic sensors only. Moreover, as the gate positions can also be obtained with non-GNSS based land surveying methods, CoM kinematics may be estimated in areas with reduced or no GNSS signal reception, such as in forests or indoors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA