Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Clin Transl Sci ; 8(1): e53, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38544748

RESUMO

Background: Incarceration is a significant social determinant of health, contributing to high morbidity, mortality, and racialized health inequities. However, incarceration status is largely invisible to health services research due to inadequate clinical electronic health record (EHR) capture. This study aims to develop, train, and validate natural language processing (NLP) techniques to more effectively identify incarceration status in the EHR. Methods: The study population consisted of adult patients (≥ 18 y.o.) who presented to the emergency department between June 2013 and August 2021. The EHR database was filtered for notes for specific incarceration-related terms, and then a random selection of 1,000 notes was annotated for incarceration and further stratified into specific statuses of prior history, recent, and current incarceration. For NLP model development, 80% of the notes were used to train the Longformer-based and RoBERTa algorithms. The remaining 20% of the notes underwent analysis with GPT-4. Results: There were 849 unique patients across 989 visits in the 1000 annotated notes. Manual annotation revealed that 559 of 1000 notes (55.9%) contained evidence of incarceration history. ICD-10 code (sensitivity: 4.8%, specificity: 99.1%, F1-score: 0.09) demonstrated inferior performance to RoBERTa NLP (sensitivity: 78.6%, specificity: 73.3%, F1-score: 0.79), Longformer NLP (sensitivity: 94.6%, specificity: 87.5%, F1-score: 0.93), and GPT-4 (sensitivity: 100%, specificity: 61.1%, F1-score: 0.86). Conclusions: Our advanced NLP models demonstrate a high degree of accuracy in identifying incarceration status from clinical notes. Further research is needed to explore their scaled implementation in population health initiatives and assess their potential to mitigate health disparities through tailored system interventions.

3.
JMIR Med Educ ; 9: e45312, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36753318

RESUMO

BACKGROUND: Chat Generative Pre-trained Transformer (ChatGPT) is a 175-billion-parameter natural language processing model that can generate conversation-style responses to user input. OBJECTIVE: This study aimed to evaluate the performance of ChatGPT on questions within the scope of the United States Medical Licensing Examination (USMLE) Step 1 and Step 2 exams, as well as to analyze responses for user interpretability. METHODS: We used 2 sets of multiple-choice questions to evaluate ChatGPT's performance, each with questions pertaining to Step 1 and Step 2. The first set was derived from AMBOSS, a commonly used question bank for medical students, which also provides statistics on question difficulty and the performance on an exam relative to the user base. The second set was the National Board of Medical Examiners (NBME) free 120 questions. ChatGPT's performance was compared to 2 other large language models, GPT-3 and InstructGPT. The text output of each ChatGPT response was evaluated across 3 qualitative metrics: logical justification of the answer selected, presence of information internal to the question, and presence of information external to the question. RESULTS: Of the 4 data sets, AMBOSS-Step1, AMBOSS-Step2, NBME-Free-Step1, and NBME-Free-Step2, ChatGPT achieved accuracies of 44% (44/100), 42% (42/100), 64.4% (56/87), and 57.8% (59/102), respectively. ChatGPT outperformed InstructGPT by 8.15% on average across all data sets, and GPT-3 performed similarly to random chance. The model demonstrated a significant decrease in performance as question difficulty increased (P=.01) within the AMBOSS-Step1 data set. We found that logical justification for ChatGPT's answer selection was present in 100% of outputs of the NBME data sets. Internal information to the question was present in 96.8% (183/189) of all questions. The presence of information external to the question was 44.5% and 27% lower for incorrect answers relative to correct answers on the NBME-Free-Step1 (P<.001) and NBME-Free-Step2 (P=.001) data sets, respectively. CONCLUSIONS: ChatGPT marks a significant improvement in natural language processing models on the tasks of medical question answering. By performing at a greater than 60% threshold on the NBME-Free-Step-1 data set, we show that the model achieves the equivalent of a passing score for a third-year medical student. Additionally, we highlight ChatGPT's capacity to provide logic and informational context across the majority of answers. These facts taken together make a compelling case for the potential applications of ChatGPT as an interactive medical education tool to support learning.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA