Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Radiat Prot Dosimetry ; 199(15-16): 1813-1817, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37819300

RESUMO

This study presents the performance of two fast Monte Carlo codes, PENELOPE/penEasyIR and MCGPU-IR in order to assess operator doses in interventional radiology. In particular, it aims to validate the calculations when workers are protected with shielding located between the patient and the operator. The experiments are performed in a calibration laboratory and measurements are gathered using Thermo EPD and Mirion DMC personal active dosemeters. Calculation efficiency of the fast Monte Carlo codes is approximately four orders of magnitude greater than for a standard Monte Carlo code. Satisfactory agreement between measurements and calculations is shown.


Assuntos
Radiologia Intervencionista , Radiometria , Humanos , Imagens de Fantasmas , Método de Monte Carlo , Calibragem
2.
Phys Med ; 85: 166-174, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34015619

RESUMO

PURPOSE: Interventional radiology techniques cause radiation exposure both to patient and personnel. The radiation dose to the operator is usually measured with dosimeters located at specific points above or below the lead aprons. The aim of this study is to develop and validate two fast Monte Carlo (MC) codes for radiation transport in order to improve the assessment of individual doses in interventional radiology. The proposed methodology reduces the number of required dosemeters and provides immediate dose results. METHODS: Two fast MC simulation codes, PENELOPE/penEasyIR and MCGPU-IR, have been developed. Both codes have been validated by comparing fast MC calculations with the multipurpose PENELOPE MC code and with measurements during a realistic interventional procedure. RESULTS: The new codes were tested with a computation time of about 120 s to estimate operator doses while a standard simulation needs several days to obtain similar uncertainties. When compared with the standard calculation in simple set-ups, MCGPU-IR tends to underestimate doses (up to 5%), while PENELOPE/penEasyIR overestimates them (up to 18%). When comparing both fast MC codes with experimental values in realistic set-ups, differences are within 25%. These differences are within accepted uncertainties in individual monitoring. CONCLUSION: The study highlights the fact that computational dosimetry based on the use of fast MC codes can provide good estimates of the personal dose equivalent and overcome some of the limitations of occupational monitoring in interventional radiology. Notably, MCGPU-IR calculates both organ doses and effective dose, providing a better estimate of radiation risk.


Assuntos
Radiologia Intervencionista , Radiometria , Simulação por Computador , Humanos , Método de Monte Carlo , Doses de Radiação , Dosímetros de Radiação
3.
Radiat Prot Dosimetry ; 195(3-4): 391-398, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-33823548

RESUMO

Exposure levels to staff in interventional radiology (IR) may be significant and appropriate assessment of radiation doses is needed. Issues regarding measurements using physical dosemeters in the clinical environment still exist. The objective of this work was to explore the prerequisites for assessing staff radiation dose, based on simulations only. Personal dose equivalent, Hp(10), was assessed using simulations based on Monte Carlo methods. The position of the operator was defined using a 3D motion tracking system. X-ray system exposure parameters were extracted from the x-ray equipment. The methodology was investigated and the simulations compared to measurements during IR procedures. The results indicate that the differences between simulated and measured staff radiation doses, in terms of the personal dose equivalent quantity Hp(10), are in the order of 30-70 %. The results are promising but some issues remain to be solved, e.g. an automated tracking of movable parts such as the ceiling-mounted protection shield.


Assuntos
Exposição Ocupacional , Monitoramento de Radiação , Humanos , Método de Monte Carlo , Exposição Ocupacional/análise , Doses de Radiação , Radiologia Intervencionista , Radiometria
4.
Phys Med ; 32(9): 1111-7, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27554367

RESUMO

OBJECTIVE: This paper aims to provide some practical recommendations to reduce eye lens dose for workers exposed to X-rays in interventional cardiology and radiology and also to propose an eye lens correction factor when lead glasses are used. METHODS: Monte Carlo simulations are used to study the variation of eye lens exposure with operator position, height and body orientation with respect to the patient and the X-ray tube. The paper also looks into the efficiency of wraparound lead glasses using simulations. Computation results are compared with experimental measurements performed in Spanish hospitals using eye lens dosemeters as well as with data from available literature. RESULTS: Simulations showed that left eye exposure is generally higher than the right eye, when the operator stands on the right side of the patient. Operator height can induce a strong dose decrease by up to a factor of 2 for the left eye for 10-cm-taller operators. Body rotation of the operator away from the tube by 45°-60° reduces eye exposure by a factor of 2. The calculation-based correction factor of 0.3 for wraparound type lead glasses was found to agree reasonably well with experimental data. CONCLUSIONS: Simple precautions, such as the positioning of the image screen away from the X-ray source, lead to a significant reduction of the eye lens dose. Measurements and simulations performed in this work also show that a general eye lens correction factor of 0.5 can be used when lead glasses are worn regardless of operator position, height and body orientation.


Assuntos
Cardiologia/métodos , Cristalino/efeitos da radiação , Proteção Radiológica/métodos , Radiologia Intervencionista/métodos , Algoritmos , Simulação por Computador , Desenho de Equipamento , Humanos , Chumbo , Método de Monte Carlo , Exposição Ocupacional/prevenção & controle , Doses de Radiação , Radiometria/métodos , Reprodutibilidade dos Testes , Recursos Humanos , Raios X
5.
Radiat Prot Dosimetry ; 170(1-4): 45-8, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26464527

RESUMO

Recent studies highlight the fact that the new eye lens dose limit can be exceeded in interventional radiology procedures and that eye lens monitoring could be required for these workers. The recommended operational quantity for monitoring of eye lens exposure is the personal dose equivalent at 3 mm depth Hp(3) (ICRU 51). However, there are no available conversion coefficients in international standards, while in the literature coefficients have only been calculated for monoenergetic beams and for ISO 4037-1 X-ray qualities. The aim of this article is to provide air kerma to Hp(3) conversion coefficients for a cylindrical phantom made of ICRU-4 elements tissue-equivalent material for RQR radiation qualities (IEC-61267) from 40 to 120 kV and for angles of incidence from 0 to 180°, which are characteristic of medical workplace. Analytic calculations using interpolation techniques and Monte Carlo modelling have been compared.


Assuntos
Cristalino/efeitos da radiação , Monitoramento de Radiação/métodos , Monitoramento de Radiação/normas , Proteção Radiológica/métodos , Ar , Algoritmos , Calibragem , Simulação por Computador , Humanos , Método de Monte Carlo , Exposição Ocupacional , Imagens de Fantasmas , Fótons , Doses de Radiação , Dosímetros de Radiação , Monitoramento de Radiação/instrumentação , Proteção Radiológica/instrumentação , Raios X
6.
Radiat Prot Dosimetry ; 144(1-4): 453-8, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21186215

RESUMO

The work package 3 of the ORAMED project, Collaborative Project (2008-11) supported by the European Commission within its seventh Framework Programme, is focused on the optimisation of the use of active personal dosemeters (APDs) in interventional radiology and cardiology (IR/IC). Indeed, a lack of appropriate APD devices is identified for these specific fields. Few devices can detect low-energy X rays (20-100 keV), and none of them are specifically designed for working in pulsed radiation fields. The work presented in this paper consists in studying the behaviour of some selected APDs deemed suitable for application in IR/IC. For this purpose, measurements under laboratory conditions, both with continuous and pulsed X-ray beams, and tests in real conditions on site in different European hospitals were performed. This study highlights the limitations of APDs for this application and the need of improving the APD technology so as to fulfil all needs in the IR/IC field.


Assuntos
Cardiologia , Exposição Ocupacional/prevenção & controle , Monitoramento de Radiação/instrumentação , Proteção Radiológica/instrumentação , Radiologia Intervencionista , Radiometria/instrumentação , Desenho de Equipamento , Europa (Continente) , Hospitais , Humanos , Laboratórios , Método de Monte Carlo , Equipamentos de Proteção , Monitoramento de Radiação/métodos , Proteção Radiológica/métodos , Radiação Ionizante , Radiometria/métodos , Recursos Humanos , Raios X
7.
Med Phys ; 34(8): 3323-33, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17879796

RESUMO

To evaluate the dose values predicted by several calculation algorithms in two treatment planning systems, Monte Carlo (MC) simulations and measurements by means of various detectors were performed in heterogeneous layer phantoms with water- and bone-equivalent materials. Percentage depth doses (PDDs) were measured with thermoluminescent dosimeters (TLDs), metal-oxide semiconductor field-effect transistors (MOSFETs), plane parallel and cylindrical ionization chambers, and beam profiles with films. The MC code used for the simulations was the PENELOPE code. Three different field sizes (10 x 10, 5 x 5, and 2 x 2 cm2) were studied in two phantom configurations and a bone equivalent material. These two phantom configurations contained heterogeneities of 5 and 2 cm of bone, respectively. We analyzed the performance of four correction-based algorithms and one based on convolution superposition. The correction-based algorithms were the Batho, the Modified Batho, the Equivalent TAR implemented in the Cadplan (Varian) treatment planning system (TPS), and the Helax-TMS Pencil Beam from the Helax-TMS (Nucletron) TPS. The convolution-superposition algorithm was the Collapsed Cone implemented in the Helax-TMS. All the correction-based calculation algorithms underestimated the dose inside the bone-equivalent material for 18 MV compared to MC simulations. The maximum underestimation, in terms of root-mean-square (RMS), was about 15% for the Helax-TMS Pencil Beam (Helax-TMS PB) for a 2 x 2 cm2 field inside the bone-equivalent material. In contrast, the Collapsed Cone algorithm yielded values around 3%. A more complex behavior was found for 6 MV where the Collapsed Cone performed less well, overestimating the dose inside the heterogeneity in 3%-5%. The rebuildup in the interface bone-water and the penumbra shrinking in high-density media were not predicted by any of the calculation algorithms except the Collapsed Cone, and only the MC simulations matched the experimental values within the estimated uncertainties. The TLD and MOSFET detectors were suitable for dose measurement inside bone-equivalent materials, while parallel ionization chambers, applying the same calibration and correction factors as in water, systematically underestimated dose by 3%-5%.


Assuntos
Algoritmos , Osso e Ossos/patologia , Radiometria/métodos , Dosimetria Termoluminescente/métodos , Calibragem , Simulação por Computador , Humanos , Modelos Teóricos , Método de Monte Carlo , Imagens de Fantasmas , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Dosimetria Termoluminescente/instrumentação , Água
8.
Radiat Prot Dosimetry ; 125(1-4): 28-32, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17277325

RESUMO

This study aims at testing the INTE ring dosemeter based on MCP-Ns and TLD-100 detectors on users from the field of medical applications, namely radiopharmacists, personnel at a cyclotron facility with corresponding FDG synthesis cells, interventional radiology technologists and radiologists. These users were chosen due to the fact that they have a significantly high risk of exposure to their hands. Following previous results, MCP-Ns TL thin material was used for radiology measurements, whereas TLD-100 was preferred for other applications. The dosemeters were tested to make sure that they were waterproof and that they could be sterilised properly prior to use. Results confirm the need to implement finger dosimetry, mainly for interventional radiologists as finger dose can be >50 times higher than whole-body dose and 3 times higher than wrist dose.


Assuntos
Medicina Nuclear , Exposição Ocupacional/análise , Monitoramento de Radiação/instrumentação , Monitoramento de Radiação/métodos , Proteção Radiológica/métodos , Medição de Risco/métodos , Carga Corporal (Radioterapia) , Humanos , Exposição Ocupacional/prevenção & controle , Radiologia , Eficiência Biológica Relativa , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Espanha
9.
Radiat Prot Dosimetry ; 112(1): 141-68, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15574989

RESUMO

In this paper, we will present a first (but not complete) status description of active personal dosemeters (APDs) and their implementation in European countries. In modern radiation protection practices, APDs are becoming absolutely necessary operational tools for satisfying the ALARA principle. Despite their success, they are relatively new for individual monitoring of workers. Regulation, legal requirements and calibration procedures are different in European member states. A catalogue of commercially available and prototype devices is presented. Improvement on devices and in implementation of calibration method are expected in the forthcoming years. End-user feedback experience and requirements are reported.


Assuntos
Bases de Dados Factuais , Exposição Ocupacional/estatística & dados numéricos , Monitoramento de Radiação/instrumentação , Proteção Radiológica/instrumentação , Proteção Radiológica/estatística & dados numéricos , Radiometria/instrumentação , Radiometria/estatística & dados numéricos , Carga Corporal (Radioterapia) , Coleta de Dados , Europa (Continente) , Guias como Assunto/normas , Relações Interinstitucionais , Cooperação Internacional , Exposição Ocupacional/normas , Garantia da Qualidade dos Cuidados de Saúde/métodos , Garantia da Qualidade dos Cuidados de Saúde/organização & administração , Garantia da Qualidade dos Cuidados de Saúde/estatística & dados numéricos , Garantia da Qualidade dos Cuidados de Saúde/tendências , Doses de Radiação , Monitoramento de Radiação/métodos , Monitoramento de Radiação/normas , Monitoramento de Radiação/estatística & dados numéricos , Proteção Radiológica/métodos , Proteção Radiológica/normas , Radiometria/normas , Radiometria/tendências , Padrões de Referência , Gestão da Segurança/métodos , Gestão da Segurança/organização & administração , Gestão da Segurança/estatística & dados numéricos , Gestão da Segurança/tendências , Avaliação da Tecnologia Biomédica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA