Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Lancet Infect Dis ; 17(7): 754-762, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28366725

RESUMO

BACKGROUND: The UK introduced 4CMenB-a multicomponent vaccine against serogroup B meningococcal disease-into the national infant immunisation programme in September, 2015. The Meningococcal Antigen Typing System (MATS) was used to estimate coverage by 4CMenB of invasive meningococcal group B isolates obtained during 2007-08 in England and Wales (MATS coverage). We aimed to repeat the MATS survey for invasive meningococcal group B isolates obtained during 2014-15, before 4CMenB introduction; compare strain coverage between 2007-08 and 2014-15; and investigate associations between MATS coverage, age, region, and disease outcomes. METHODS: Invasive serogroup B meningococcal isolates from cases in England, Wales, and Northern Ireland during 2014-15 were assayed using MATS and compared with 2007-08 data. MATS coverage was assessed by geographical region and age group. Clinical characteristics, risk factors, and outcomes were assessed according to MATS coverage for 2014-15 English cases. FINDINGS: In 2014-15, 165 of 251 (66%; 95% CI 52-80) meningococcal group B isolates were estimated by MATS to be covered by 4CMenB, compared with 391 of 535 (73%; 95% CI 57-87) in 2007-08. The proportion of MATS-positive isolates with one vaccine antigen increased from 23% (122 of 535) in 2007-08 to 31% (78 of 251) in 2014-15, whereas the proportion with more than one antigen fell from 50% (269 of 535) to 35% (87 of 251). This effect reflected changes in circulating strains, particularly ST-269 clonal complex strains. MATS coverage increased with age, varied by geographical region, and was associated with more severe disease. INTERPRETATION: In 2014-15, two-thirds of meningococcal group B isolates were predicted to be covered by 4CMenB. Temporal changes in MATS coverage underscore the need for continued monitoring of antigen expression and diversity, particularly in countries with 4CMenB programmes. FUNDING: Public Health England, GlaxoSmithKline.


Assuntos
Esquemas de Imunização , Infecções Meningocócicas/prevenção & controle , Vacinas Meningocócicas/administração & dosagem , Neisseria meningitidis Sorogrupo B/isolamento & purificação , Antígenos de Bactérias/sangue , Antígenos de Bactérias/imunologia , Pré-Escolar , Inglaterra , Humanos , Programas de Imunização , Lactente , Vacinas Meningocócicas/imunologia , Neisseria meningitidis Sorogrupo B/imunologia , Irlanda do Norte , País de Gales
2.
Biotechnol Adv ; 31(2): 140-53, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-22985698

RESUMO

Both conventional and innovative biomedical approaches require cost-effective protein drugs with high therapeutic potency, improved bioavailability, biocompatibility, stability and pharmacokinetics. The growing longevity of the human population, the increasing incidence and prevalence of age-related diseases and the better comprehension of genetic-linked disorders prompt to develop natural and engineered drugs addressed to fulfill emerging therapeutic demands. Conventional microbial systems have been for long time exploited to produce biotherapeutics, competing with animal cells due to easier operation and lower process costs. However, both biological platforms exhibit important drawbacks (mainly associated to intracellular retention of the product, lack of post-translational modifications and conformational stresses), that cannot be overcome through further strain optimization merely due to physiological constraints. The metabolic diversity among microorganisms offers a spectrum of unconventional hosts, that, being able to bypass some of these weaknesses, are under progressive incorporation into production pipelines. In this review we describe the main biological traits and potentials of emerging bacterial, yeast, fungal and microalgae systems, by comparing selected leading species with well established conventional organisms with a long run in protein drug production.


Assuntos
Microbiologia Industrial/métodos , Engenharia de Proteínas/métodos , Proteínas Recombinantes/uso terapêutico , Animais , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Análise Custo-Benefício , Escherichia coli/genética , Escherichia coli/metabolismo , Microbiologia Industrial/economia , Mamíferos , Pichia/genética , Pichia/metabolismo , Engenharia de Proteínas/economia , Dobramento de Proteína , Processamento de Proteína Pós-Traducional , Pseudoalteromonas/genética , Pseudoalteromonas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Trichoderma/genética , Trichoderma/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA