Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(2)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38257551

RESUMO

Assessing pain in non-verbal patients is challenging, often depending on clinical judgment which can be unreliable due to fluctuations in vital signs caused by underlying medical conditions. To date, there is a notable absence of objective diagnostic tests to aid healthcare practitioners in pain assessment, especially affecting critically-ill or advanced dementia patients. Neurophysiological information, i.e., functional near-infrared spectroscopy (fNIRS) or electroencephalogram (EEG), unveils the brain's active regions and patterns, revealing the neural mechanisms behind the experience and processing of pain. This study focuses on assessing pain via the analysis of fNIRS signals combined with machine learning, utilising multiple fNIRS measures including oxygenated haemoglobin (ΔHBO2) and deoxygenated haemoglobin (ΔHHB). Initially, a channel selection process filters out highly contaminated channels with high-frequency and high-amplitude artifacts from the 24-channel fNIRS data. The remaining channels are then preprocessed by applying a low-pass filter and common average referencing to remove cardio-respiratory artifacts and common gain noise, respectively. Subsequently, the preprocessed channels are averaged to create a single time series vector for both ΔHBO2 and ΔHHB measures. From each measure, ten statistical features are extracted and fusion occurs at the feature level, resulting in a fused feature vector. The most relevant features, selected using the Minimum Redundancy Maximum Relevance method, are passed to a Support Vector Machines classifier. Using leave-one-subject-out cross validation, the system achieved an accuracy of 68.51%±9.02% in a multi-class task (No Pain, Low Pain, and High Pain) using a fusion of ΔHBO2 and ΔHHB. These two measures collectively demonstrated superior performance compared to when they were used independently. This study contributes to the pursuit of an objective pain assessment and proposes a potential biomarker for human pain using fNIRS.


Assuntos
Medição da Dor , Dor , Humanos , Oxiemoglobinas , Dor/diagnóstico , Medição da Dor/métodos , Espectroscopia de Luz Próxima ao Infravermelho
2.
Front Pain Res (Lausanne) ; 4: 1150264, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37415829

RESUMO

Pain assessment is a challenging task encountered by clinicians. In clinical settings, patients' self-report is considered the gold standard in pain assessment. However, patients who are unable to self-report pain are at a higher risk of undiagnosed pain. In the present study, we explore the use of multiple sensing technologies to monitor physiological changes that can be used as a proxy for objective measurement of acute pain. Electrodermal activity (EDA), photoplethysmography (PPG), and respiration (RESP) signals were collected from 22 participants under two pain intensities (low and high) and on two different anatomical locations (forearm and hand). Three machine learning models were implemented, including support vector machines (SVM), decision trees (DT), and linear discriminant analysis (LDA) for the identification of pain. Various pain scenarios were investigated, identification of pain (no pain, pain), multiclass (no pain, low pain, high pain), and identification of pain location (forearm, hand). Reference classification results from individual sensors and from all sensors together were obtained. After feature selection, results showed that EDA was the most informative sensor in the three pain conditions, 93.2±8% in identification of pain, 68.9±10% in the multiclass problem, and 56.0±8% for the identification of pain location. These results identify EDA as the superior sensor in our experimental conditions. Future work is required to validate the obtained features to improve its feasibility in more realistic scenarios. Finally, this study proposes EDA as a candidate to design a tool that can assist clinicians in the assessment of acute pain of nonverbal patients.

3.
NPJ Digit Med ; 6(1): 76, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37100924

RESUMO

Pain is a complex and personal experience that presents diverse measurement challenges. Different sensing technologies can be used as a surrogate measure of pain to overcome these challenges. The objective of this review is to summarise and synthesise the published literature to: (a) identify relevant non-invasive physiological sensing technologies that can be used for the assessment of human pain, (b) describe the analytical tools used in artificial intelligence (AI) to decode pain data collected from sensing technologies, and (c) describe the main implications in the application of these technologies. A literature search was conducted in July 2022 to query PubMed, Web of Sciences, and Scopus. Papers published between January 2013 and July 2022 are considered. Forty-eight studies are included in this literature review. Two main sensing technologies (neurological and physiological) are identified in the literature. The sensing technologies and their modality (unimodal or multimodal) are presented. The literature provided numerous examples of how different analytical tools in AI have been applied to decode pain. This review identifies different non-invasive sensing technologies, their analytical tools, and the implications for their use. There are significant opportunities to leverage multimodal sensing and deep learning to improve accuracy of pain monitoring systems. This review also identifies the need for analyses and datasets that explore the inclusion of neural and physiological information together. Finally, challenges and opportunities for designing better systems for pain assessment are also presented.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA