Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2425: 201-215, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35188634

RESUMO

Screening compounds for potential carcinogenicity is of major importance for prevention of environmentally induced cancers. A large sequence of predictive models, ranging from short-term biological assays (e.g., mutagenicity tests) to theoretical models, has been attempted in this field. Theoretical approaches such as (Q)SAR are highly desirable for identifying carcinogens, since they actively promote the replacement, reduction, and refinement of animal tests. This chapter reports and describes some of the most noted (Q)SAR models based on human expert knowledge and statistical approaches, aiming at predicting the carcinogenicity of chemicals. Additionally, the performance of the selected models has been evaluated, and the results are interpreted in details by applying these predictive models to some pharmaceutical molecules.


Assuntos
Bioensaio , Carcinógenos , Animais , Testes de Carcinogenicidade/métodos , Carcinógenos/química , Carcinógenos/toxicidade , Humanos , Testes de Mutagenicidade , Mutagênicos/toxicidade , Relação Quantitativa Estrutura-Atividade
2.
Methods Mol Biol ; 1425: 107-19, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27311464

RESUMO

Screening compounds for potential carcinogenicity is of major importance for prevention of environmentally induced cancers. A large sequence of alternative predictive models, ranging from short-term biological assays (e.g. mutagenicity tests) to theoretical models, have been attempted in this field. Theoretical approaches such as (Q)SAR are highly desirable for identifying carcinogens, since they actively promote the replacement, reduction, and refinement of animal tests. This chapter reports and describes some of the most noted (Q)SAR models based on the human expert knowledge and statistically approach, aiming at predicting the carcinogenicity of chemicals. Additionally, the performance of the selected models has been evaluated and the results are interpreted in details by applying these prediction models to some pharmaceutical molecules.


Assuntos
Carcinógenos/química , Biologia Computacional/métodos , Testes de Carcinogenicidade , Simulação por Computador , Humanos , Modelos Biológicos , Modelos Químicos , Relação Quantitativa Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA