Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Environ Res ; 233: 116474, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37352953

RESUMO

Soil conditioner is class of products used to enhance physics, physicochemical or soil biological activities, being able to recover disturbed or nutritional unbalanced soils. The formulation of a soil conditioner composed by bauxite residue (BR), and organic oil palm wastes, as raw materials, was recently proposed as an innovative strategy for the Brazilian acid soils amendment. Here we show the results of soil conditioner amended soil leaching tests and agronomical performance. The soil conditioners were formulated by BR mixed with decomposed POC (palm oil compost) and non-decomposed POMW (palm oil mill waste) oil palm wastes, in the proportion of 25% BR + 75% POC (T1) and 50% BR + 50% POMW (T2), in addition to the treatment with 100% POMW without BR (T3) and limestone at a dose calculated to raise soil pH to 6.0 (T4). Except for T4, all conditioners were applied to the soil at doses of 40, 80, and 120 t ha-1 for leaching tests. The experimental plots were composed of polyvinyl chloride columns, filled with 5 kg of soil, with bottles adapted with hoses at the bottom to facilitate drainage of the leachate. After leaching tests, the respective columns were used as pots for the cultivation of Brachiaria grass, stage with addition of a control composed by undisturbed soil (T5). The pH of the leachates had changes, but the use of BR associated with POMW was similar to the use of limestone. Of the 65 chemical elements evaluated, only nine were identified in the leachate, being most of them considered as plant nutrients. As for soil pH, limestone was slightly higher (6.6) than treatments that had BR (5.5). Brachiaria grass cultivated in the soil amended with conditioners showed similar results of limestone treated soil for the parameters of plant development and showed fertility improvement.


Assuntos
Poluentes do Solo , Solo , Solo/química , Óxido de Alumínio , Óleo de Palmeira , Agricultura/métodos , Poaceae , Poluentes do Solo/análise , Carbonato de Cálcio
2.
J Vis Exp ; (173)2021 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-34338670

RESUMO

Despite recent advances in the characterization of yeast mitochondrial proteome, the submitochondrial localization of a significant number of proteins remains elusive. Here, we describe a robust and effective method for determining the suborganellar localization of yeast mitochondrial proteins, which is considered a fundamental step during mitochondrial protein function elucidation. This method involves an initial step that consists of obtaining highly pure intact mitochondria. These mitochondrial preparations are then subjected to a subfractionation protocol consisting of hypotonic shock (swelling) and incubation with proteinase K (protease). During swelling, the outer mitochondrial membrane is selectively disrupted, allowing the proteinase K to digest proteins of the intermembrane space compartment. In parallel, to obtain information about the topology of membrane proteins, the mitochondrial preparations are initially sonicated, and then subjected to alkaline extraction with sodium carbonate. Finally, after centrifugation, the pellet and supernatant fractions from these different treatments are analyzed by SDS-PAGE and western blot. The submitochondrial localization as well as the membrane topology of the protein of interest is obtained by comparing its western blot profile with known standards.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas Fúngicas/metabolismo , Mitocôndrias , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-31669706

RESUMO

Strongly seasonal environments pose challenges for performance and survival of animals, especially when resource abundance seasonally fluctuates. We investigated the seasonal variation of key metabolic biomarkers in the muscles of males from three species (Rhinella jimi, R. granulosa and Pleurodema diplolister) of anurans from the drastically seasonal Brazilian semi-arid area, Caatinga. We examined the expression of proteins regulating energy turnover (AMP-activated protein kinase [AMPK] and protein kinase B [AKT]), protein synthesis and homeostasis (total and phosphorylated eukaryotic initiation factor 2α [eIF2α and p-eIF2α] and chaperone proteins [HSP 60, 70, and 90]) in muscles predominantly related to reproduction and locomotion. Cytochrome c oxidase (COX) activity was also assessed as an index of the muscle aerobic capacity. The expression pattern of metabolic biomarkers indicates that the maintenance of muscular function is regulated in a species-specific manner during the drastic seasonal variation. Rhinella jimi and R. granulosa that remain active during the drought appear to maintain muscles through more energy expensive pathways including elevated protein synthesis, while the aestivating P. diplolister employs energy conservation strategy suppressing protein synthesis, decreasing chaperone expression and increasing expression of AMPK. Two (P. diplolister and R. granulosa) of the three studied species activate cell survival pathways during the drought likely to prevent muscle atrophy, and all three studied species maintain the muscle aerobic capacity throughout the year, despite the resource limitation. These strategies are important considering the unpredictability of the reproductive event and high demand on muscular activity during the reproductive season in these amphibians. SUMMARY STATEMENT: We studied seasonal variation of key metabolic biomarkers in the muscles of anurans that experience drastic variation in environmental conditions and differ in seasonal activity patterns.


Assuntos
Anuros/fisiologia , Biomarcadores/metabolismo , Metabolismo Energético , Músculo Esquelético/metabolismo , Reprodução , Estações do Ano , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Brasil , Secas , Proteínas de Choque Térmico/metabolismo , Masculino , Proteínas Proto-Oncogênicas c-akt/metabolismo
4.
Photomed Laser Surg ; 33(3): 123-8, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25751666

RESUMO

OBJECTIVE: The purpose of this study was to demonstrate the effect of low-level laser therapy (LLLT) on the peri-implant bone healing process in the rabbit mandible. BACKGROUND DATA: LLLT has been shown to accelerate tissue repair and osseointegration of implants placed into the rabbit tibia. However, the beneficial effects of LLLT have never been tested in the rabbit mandible, which would more closely mimic the human situation. MATERIALS AND METHODS: Twenty-four male New Zealand rabbits were randomly divided into four groups of six animals each. All animals had their left mandibular incisors extracted, followed by immediate insertion of a titanium dental implant in the fresh socket. Three groups received LLLT [aluminum-gallium-arsenide (AlGaAs), λ=830nm, 50 mW, continuous wave (CW)] at three different energy densities per treatment session (E-5, 5 J/cm(2); E-10, 10 J/cm(2); and E-20, 20 J/cm(2)). Irradiation was performed every 48 h for 13 days, totaling seven sessions. One group received sham treatment (controls). Histological sections were obtained from each of the 24 mandibles dissected, without first decalcifying the specimens, and were stained with hematoxylin and eosin and Picrosirius red for histomorphometric evaluation. Bone-to-implant contact (BIC), bone formation area, and collagen fiber area were assessed by light microscopy. RESULTS: Significant differences were found between group E-20 and all other groups (p<0.05). Histomorphometric evaluation showed significantly higher BIC and significantly more collagen fibers in group E-20. CONCLUSIONS: Photobiostimulation with LLLT at an energy density of 20 J/cm(2) per session had a significant positive effect on new bone formation around dental implants inserted in the rabbit mandible.


Assuntos
Terapia com Luz de Baixa Intensidade , Mandíbula/patologia , Cicatrização/efeitos da radiação , Animais , Masculino , Mandíbula/efeitos da radiação , Osteogênese/efeitos da radiação , Coelhos
5.
Bioresour Technol ; 180: 97-105, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25590426

RESUMO

The autohydrolysis process has been considered a simple, low-cost and environmental friendly technology for generation of sugars from biomass. In order to improve accessibility of enzymes during enzymatic hydrolysis as well as to allow the recovery of hemicellulose in the filtrate, the sugarcane bagasse was pretreated using autohydrolysis followed by a mechanical refining process. The autohydrolysis was carried out in three different conditions. Autohydrolysis at 190°C for 10min provided the highest overall sugar (19.2/100g raw bagasse) in prehydrolyzate. The enzymatic hydrolysis step was performed for all the post-treated solids with and without refining at enzyme loadings of 5 and 10FPU/g for 96h. A total of 84.4% of sugar can be recovered from sugarcane bagasse at 180°C for 20min with 5 FPU/g enzyme charge. The economic analysis for the proposed method showed that the bioethanol production can have a financial return larger than 12%.


Assuntos
Biotecnologia/métodos , Carboidratos , Celulose/química , Saccharum/química , Biomassa , Biotecnologia/economia , Carboidratos/química , Celulose/metabolismo , Enzimas/química , Fermentação , Concentração de Íons de Hidrogênio , Hidrólise , Polissacarídeos/química , Saccharum/metabolismo
6.
Physiol Biochem Zool ; 82(6): 662-79, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19799520

RESUMO

Locomotion is central to behavior and intrinsic to many fitness-critical activities (e.g., migration, foraging), and it competes with other life-history components for energy. However, detailed analyses of how changes in locomotor activity and running behavior affect energy budgets are scarce. We quantified these effects in four replicate lines of house mice that have been selectively bred for high voluntary wheel running (S lines) and in their four nonselected control lines (C lines). We monitored wheel speeds and oxygen consumption for 24-48 h to determine daily energy expenditure (DEE), resting metabolic rate (RMR), locomotor costs, and running behavior (bout characteristics). Daily running distances increased roughly 50%-90% in S lines in response to selection. After we controlled for body mass effects, selection resulted in a 23% increase in DEE in males and a 6% increase in females. Total activity costs (DEE - RMR) accounted for 50%-60% of DEE in both S and C lines and were 29% higher in S males and 5% higher in S females compared with their C counterparts. Energetic costs of increased daily running distances differed between sexes because S females evolved higher running distances by running faster with little change in time spent running, while S males also spent 40% more time running than C males. This increase in time spent running impinged on high energy costs because the majority of running costs stemmed from "postural costs" (the difference between RMR and the zero-speed intercept of the speed vs. metabolic rate relationship). No statistical differences in these traits were detected between S and C females, suggesting that large changes in locomotor behavior do not necessarily effect overall energy budgets. Running behavior also differed between sexes: within S lines, males ran with more but shorter bouts than females. Our results indicate that selection effects on energy budgets can differ dramatically between sexes and that energetic constraints in S males might partly explain the apparent selection limit for wheel running observed for over 15 generations.


Assuntos
Comportamento Animal/fisiologia , Metabolismo Energético/fisiologia , Corrida/fisiologia , Seleção Genética , Análise de Variância , Animais , Tamanho Corporal , Cruzamentos Genéticos , Feminino , Masculino , Camundongos , Consumo de Oxigênio/fisiologia , Fatores Sexuais , Fatores de Tempo
7.
Physiol Biochem Zool ; 79(1): 83-99, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16380930

RESUMO

Selective breeding for over 35 generations has led to four replicate (S) lines of laboratory house mice (Mus domesticus) that run voluntarily on wheels about 170% more than four random-bred control (C) lines. We tested whether S lines have evolved higher running performance by increasing running economy (i.e., decreasing energy spent per unit of distance) as a correlated response to selection, using a recently developed method that allows for nearly continuous measurements of oxygen consumption (VO2) and running speed in freely behaving animals. We estimated slope (incremental cost of transport [COT]) and intercept for regressions of power (the dependent variable, VO2/min) on speed for 49 males and 47 females, as well as their maximum VO2 and speeds during wheel running, under conditions mimicking those that these lines face during the selection protocol. For comparison, we also measured COT and maximum aerobic capacity (VO2max) during forced exercise on a motorized treadmill. As in previous studies, the increased wheel running of S lines was mainly attributable to increased average speed, with males also showing a tendency for increased time spent running. On a whole-animal basis, combined analysis of males and females indicated that COT during voluntary wheel running was significantly lower in the S lines (one-tailed P=0.015). However, mice from S lines are significantly smaller and attain higher maximum speeds on the wheels; with either body mass or maximum speed (or both) entered as a covariate, the statistical significance of the difference in COT is lost (one-tailed P> or =0.2). Thus, both body size and behavior are key components of the reduction in COT. Several statistically significant sex differences were observed, including lower COT and higher resting metabolic rate in females. In addition, maximum voluntary running speeds were negatively correlated with COT in females but not in males. Moreover, males (but not females) from the S lines exhibited significantly higher treadmill VO2max as compared to those from C lines. The sex-specific responses to selection may in part be consequences of sex differences in body mass and running style. Our results highlight how differences in size and running speed can account for lower COT in S lines and suggest that lower COT may have coadapted in response to selection for higher running distances in these lines.


Assuntos
Tamanho Corporal , Cruzamento , Camundongos/genética , Camundongos/fisiologia , Corrida/fisiologia , Seleção Genética , Caracteres Sexuais , Animais , Peso Corporal , Feminino , Modelos Lineares , Masculino , Camundongos/anatomia & histologia , Reprodutibilidade dos Testes
8.
J Exp Biol ; 207(Pt 22): 3839-54, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15472015

RESUMO

The energetics of terrestrial locomotion are of considerable interest to ecologists and physiologists, but nearly all of our current knowledge comes from animals undergoing forced exercise. To explore patterns of energy use and behavior during voluntary exercise, we developed methods allowing nearly continuous measurements of metabolic rates in freely behaving small mammals, with high temporal resolution over periods of several days. We used this approach to examine relationships between ambient temperature (Ta), locomotor behavior and energy costs in the deer mouse, a small mammal that routinely encounters a large range of temperatures in its natural habitat. We tested for individual consistency in running behavior and metabolic traits, and determined how locomotor costs vary with speed and Ta. Because of the importance of thermoregulatory costs in small mammals, we checked for substitution of exercise heat for thermostatic heat production at Ta below the thermal neutral zone and determined the fraction of the daily energy budget comprising exercise costs. Locomotor behavior was highly variable among individuals but had high repeatability, at least over short intervals. We found few temperature-related changes in speed or distance run, but Ta strongly affected energy costs. Partial substitution of exercise heat for thermogenic heat occurred at low Ta. This reduced energy expenditure during low-temperature running by 23-37%, but running costs comprised a fairly minor fraction of the energy budget, so the daily energy savings via substitution were much smaller. Deer mice did not adjust running speed to maximize metabolic economy, as they seldom used the high speeds that provide the lowest cost of transport. The highest voluntary speeds (4-5 km h(-1)) were almost always below the predicted maximal aerobic speed, and were much less than the species' maximal sprint speed. Maximum voluntarily attained rates of oxygen consumption (VO2) were highest at low Ta, but rarely approached maximal VO2 during forced treadmill exercise. Mean respiratory exchange ratios coincident with maximal voluntary VO2 increased slightly as Ta declined, but were always below 1.0 (another indication that metabolic rate was less than the aerobic maximum). Individuals with high running performance (cumulative distance and running time) had high resting metabolism, which suggests a cost of having high capacity or propensity for activity.


Assuntos
Regulação da Temperatura Corporal/fisiologia , Metabolismo Energético/fisiologia , Peromyscus/fisiologia , Corrida/fisiologia , Temperatura , Animais , Dióxido de Carbono/metabolismo , Consumo de Oxigênio/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA