Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Total Environ ; 902: 165824, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37527720

RESUMO

The knowledge derived from successful case studies can act as a driver for the implementation and upscaling of nature-based solutions (NBS). This work reviewed 547 case studies to gain an overview of NBS practices and their role in reducing the adverse impact of natural hazards and climate change. The majority (60 %) of case studies are situated in Europe compared with the rest of the world where they are poorly represented. Of 547 case studies, 33 % were green solutions followed by hybrid (31 %), mixed (27 %), and blue (10 %) approaches. Approximately half (48 %) of these NBS interventions were implemented in urban (24 %), and river and lake (24 %) ecosystems. Regarding the scale of intervention, 92 % of the case studies were operationalised at local (50 %) and watershed (46 %) scales while very few (4 %) were implemented at the landscape scale. The results also showed that 63 % of NBS have been used to deal with natural hazards, climate change, and loss of biodiversity, while the remaining 37 % address socio-economic challenges (e.g., economic development, social justice, inequality, and cohesion). Around 88 % of NBS implementations were supported by policies at the national level and the rest 12 % at local and regional levels. Most of the analysed cases contributed to Sustainable Development Goals 15, 13, and 6, and biodiversity strategic goals B and D. Case studies also highlighted the co-benefits of NBS: 64 % of them were environmental co-benefits (e.g., improving biodiversity, air and water qualities, and carbon storage) while 36 % were social (27 %) and economic (9 %) co-benefits. This synthesis of case studies helps to bridge the knowledge gap between scientists, policymakers, and practitioners, which can allow adopting and upscaling of NBS for disaster risk reduction and climate change adaptation and enhance their preference in decision-making processes.

2.
Sci Total Environ ; 784: 147058, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34088074

RESUMO

Nature-based solutions (NBS) for hydro-meteorological risks (HMRs) reduction and management are becoming increasingly popular, but challenges such as the lack of well-recognised standard methodologies to evaluate their performance and upscale their implementation remain. We systematically evaluate the current state-of-the art on the models and tools that are utilised for the optimum allocation, design and efficiency evaluation of NBS for five HMRs (flooding, droughts, heatwaves, landslides, and storm surges and coastal erosion). We found that methods to assess the complex issue of NBS efficiency and cost-benefits analysis are still in the development stage and they have only been implemented through the methodologies developed for other purposes such as fluid dynamics models in micro and catchment scale contexts. Of the reviewed numerical models and tools MIKE-SHE, SWMM (for floods), ParFlow-TREES, ACRU, SIMGRO (for droughts), WRF, ENVI-met (for heatwaves), FUNWAVE-TVD, BROOK90 (for landslides), TELEMAC and ADCIRC (for storm surges) are more flexible to evaluate the performance and effectiveness of specific NBS such as wetlands, ponds, trees, parks, grass, green roof/walls, tree roots, vegetations, coral reefs, mangroves, sea grasses, oyster reefs, sea salt marshes, sandy beaches and dunes. We conclude that the models and tools that are capable of assessing the multiple benefits, particularly the performance and cost-effectiveness of NBS for HMR reduction and management are not readily available. Thus, our synthesis of modelling methods can facilitate their selection that can maximise opportunities and refute the current political hesitation of NBS deployment compared with grey solutions for HMR management but also for the provision of a wide range of social and economic co-benefits. However, there is still a need for bespoke modelling tools that can holistically assess the various components of NBS from an HMR reduction and management perspective. Such tools can facilitate impact assessment modelling under different NBS scenarios to build a solid evidence base for upscaling and replicating the implementation of NBS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA