Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Thorac Cardiovasc Surg ; 168(3): 724-734.e7, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38508486

RESUMO

OBJECTIVE: Donation after circulatory death (DCD) donors offer the ability to expand the lung donor pool and ex vivo lung perfusion (EVLP) further contributes to this ability by allowing for additional evaluation and resuscitation of these extended criteria donors. We sought to determine the outcomes of recipients receiving organs from DCD EVLP donors in a multicenter setting. METHODS: This was an unplanned post hoc analysis of a multicenter, prospective, nonrandomized trial that took place during 2011 to 2017 with 3 years of follow-up. Patients were placed into 3 groups based off procurement strategy: brain-dead donor (control), brain-dead donor evaluated by EVLP, and DCD donors evaluated by EVLP. The primary outcomes were severe primary graft dysfunction at 72 hours and survival. Secondary outcomes included select perioperative outcomes, and 1-year and 3-years allograft function and quality of life measures. RESULTS: The DCD EVLP group had significantly higher incidence of severe primary graft dysfunction at 72 hours (P = .03), longer days on mechanical ventilation (P < .001) and in-hospital length of stay (P = .045). Survival at 3 years was 76.5% (95% CI, 69.2%-84.7%) for the control group, 68.3% (95% CI, 58.9%-79.1%) for the brain-dead donor group, and 60.7% (95% CI, 45.1%-81.8%) for the DCD group (P = .36). At 3-year follow-up, presence observed bronchiolitis obliterans syndrome or quality of life metrics did not differ among the groups. CONCLUSIONS: Although DCD EVLP allografts might not be appropriate to transplant in every candidate recipient, the expansion of their use might afford recipients stagnant on the waitlist a viable therapy.


Assuntos
Transplante de Pulmão , Perfusão , Doadores de Tecidos , Humanos , Transplante de Pulmão/métodos , Transplante de Pulmão/efeitos adversos , Masculino , Feminino , Pessoa de Meia-Idade , Perfusão/métodos , Perfusão/efeitos adversos , Adulto , Estudos Prospectivos , Doadores de Tecidos/provisão & distribuição , Disfunção Primária do Enxerto/etiologia , Disfunção Primária do Enxerto/fisiopatologia , Sobrevivência de Enxerto , Preservação de Órgãos/métodos , Seleção do Doador , Fatores de Tempo , Morte Encefálica , Resultado do Tratamento , Pulmão/fisiopatologia , Obtenção de Tecidos e Órgãos/métodos , Fatores de Risco , Qualidade de Vida
2.
Artif Organs ; 47(11): 1794-1797, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37587902

RESUMO

BACKGROUND: Ex vivo lung perfusion (EVLP) enables lung resuscitation before transplantation, and training is key, particularly in low-volume settings. To enable technique refinement and continuing education, we sought to demonstrate the value of a low-cost, high-fidelity EVLP simulator that would allow reproducible clinical scenarios. METHODS: In partnership with our EVLP manufacturer, we utilized the XPS™ Jensen Lung with our clinical system. The Jensen Lung has two simulated lung bladders and an in-line polymethylpentene fiber oxygenator. It allows titration of ventilator support which aids in accurate clinical simulation. For simulations, blood gases (BGs) were obtained and compared with integrated in-line perfusate gas monitors (PGMs). PaO2 , PCO2 , and pH were measured and compared. RESULTS: The PGM and BG values were not significantly different throughout the range of FiO2 and sweep gas flow rates evaluated. The "delta" PaO2 was measured between LA and PA and did not show any change between approaches. The pH measurement between BG and PGM was not significantly different. CONCLUSIONS: The XPS™ Jensen Lung simulator allows for a high-fidelity simulator of clinical EVLP. The correlation of the PGM and the BG measurement of the PaO2 and pH allow for a low-cost simulation, as the PGMs are in line in the circuit, and enable real-time tracking of perfusate gas parameters with the PGM. Implementation of a standardized clinical EVLP training program allows the maintenance of technique and enables clinical simulation training without the need for costly animal perfusions and the use of multiple BG measurements.


Assuntos
Transplante de Pulmão , Animais , Transplante de Pulmão/métodos , Pulmão , Circulação Extracorpórea/métodos , Perfusão/métodos , Gases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA