Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Diabetologia ; 65(10): 1676-1686, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35867128

RESUMO

AIMS/HYPOTHESIS: Mitochondrial dysfunction, which can be approximated by blood mitochondrial DNA copy number (mtDNA-CN), has been implicated in the pathogenesis of type 2 diabetes mellitus. Thus far, however, insights from prospective cohort studies and Mendelian randomisation (MR) analyses on this relationship are limited. We assessed the association between blood mtDNA-CN and incident type 2 diabetes using multivariable-adjusted regression analyses, and the associations between blood mtDNA-CN and type 2 diabetes and BMI using bi-directional MR. METHODS: Multivariable-adjusted Cox proportional hazard models were used to estimate the association between blood mtDNA-CN and incident type 2 diabetes in 285,967 unrelated European individuals from UK Biobank free of type 2 diabetes at baseline. Additionally, a cross-sectional analysis was performed to investigate the association between blood mtDNA-CN and BMI. We also assessed the potentially causal relationship between blood mtDNA-CN and type 2 diabetes (N=898,130 from DIAGRAM, N=215,654 from FinnGen) and BMI (N=681,275 from GIANT) using bi-directional two-sample MR. RESULTS: During a median follow-up of 11.87 years, 15,111 participants developed type 2 diabetes. Participants with a higher level of blood mtDNA-CN are at lower risk of developing type 2 diabetes (HR 0.90 [95% CI 0.89, 0.92]). After additional adjustment for BMI and other confounders, these results attenuated moderately and remained present. The multivariable-adjusted cross-sectional analyses showed that higher blood mtDNA-CN was associated with lower BMI (-0.12 [95% CI -0.14, -0.10]) kg/m2. In the bi-directional MR analyses, we found no evidence for causal associations between blood mtDNA-CN and type 2 diabetes, and blood mtDNA-CN and BMI in either direction. CONCLUSIONS/INTERPRETATION: The results from the present study indicate that the observed association between low blood mtDNA-CN and higher risk of type 2 diabetes is likely not causal.


Assuntos
DNA Mitocondrial , Diabetes Mellitus Tipo 2 , Estudos Transversais , Variações do Número de Cópias de DNA/genética , DNA Mitocondrial/genética , Diabetes Mellitus Tipo 2/genética , Humanos , Mitocôndrias , Estudos Prospectivos
2.
Hum Mutat ; 40(10): 1749-1759, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31212395

RESUMO

PURPOSE: Stargardt disease (STGD1) is caused by biallelic mutations in ABCA4, but many patients are genetically unsolved due to insensitive mutation-scanning methods. We aimed to develop a cost-effective sequencing method for ABCA4 exons and regions carrying known causal deep-intronic variants. METHODS: Fifty exons and 12 regions containing 14 deep-intronic variants of ABCA4 were sequenced using double-tiled single molecule Molecular Inversion Probe (smMIP)-based next-generation sequencing. DNAs of 16 STGD1 cases carrying 29 ABCA4 alleles and of four healthy persons were sequenced using 483 smMIPs. Thereafter, DNAs of 411 STGD1 cases with one or no ABCA4 variant were sequenced. The effect of novel noncoding variants on splicing was analyzed using in vitro splice assays. RESULTS: Thirty-four ABCA4 variants previously identified in 16 STGD1 cases were reliably identified. In 155/411 probands (38%), two causal variants were identified. We identified 11 deep-intronic variants present in 62 alleles. Two known and two new noncanonical splice site variants showed splice defects, and one novel deep-intronic variant (c.4539+2065C>G) resulted in a 170-nt mRNA pseudoexon insertion (p.[Arg1514Lysfs*35,=]). CONCLUSIONS: smMIPs-based sequence analysis of coding and selected noncoding regions of ABCA4 enabled cost-effective mutation detection in STGD1 cases in previously unsolved cases.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Análise Mutacional de DNA/métodos , Íntrons , Sondas Moleculares , Mutação , Doença de Stargardt/diagnóstico , Doença de Stargardt/genética , Alelos , Biologia Computacional , Éxons , Estudos de Associação Genética , Predisposição Genética para Doença , Alemanha , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Anotação de Sequência Molecular , Linhagem , Splicing de RNA
3.
JAMA Ophthalmol ; 137(8): 867-876, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31120506

RESUMO

IMPORTANCE: Age-related macular degeneration (AMD) is a common threat to vision loss in individuals older than 50 years. While neovascular complications in AMD are treatable, there is currently no therapy for geographic atrophy secondary to AMD. Geographic atrophy lesion progression over time shows considerable interindividual variability, but little is known about prognostic factors. OBJECTIVE: To elucidate the contribution of common genetic variants to geographic atrophy lesion growth. DESIGN, SETTING, AND PARTICIPANTS: This pooled analysis combined 4 independent studies: the Fundus Autofluorescence Imaging in Age-Related Macular Degeneration (FAM) study, the Directional Spread in Geographic Atrophy (DSGA) study, the Age-Related Eye Disease Study (AREDS), and the Geographic Atrophy Treatment Evaluation (GATE) study. Each provided data for geographic atrophy lesion growth in specific designs. Patients with geographic atrophy secondary to AMD were recruited to these studies. Genotypes were retrieved through the database of Genotypes and Phenotypes (for AREDS) or generated at the Cologne Center for Genomics (for FAM, DSGA, and GATE). MAIN OUTCOMES: The correlation between square root-transformed geographic atrophy growth rate and 7 596 219 genetic variants passing quality control was estimated using linear regression. The calculations were adjusted for known factors influencing geographic atrophy growth, such as the presence of bilateral geographic atrophy as well as the number of lesion spots and follow-up times. MAIN OUTCOMES AND MEASURES: Slopes per allele, 95% CIs, and P values of genetic variants correlated with geographic atrophy lesion growth. RESULTS: A total of 935 patients (mean [SD] age, 74.7 [7.8] years; 547 female participants [59.0%]) were included. Two gene loci with conservative genome-wide significance were identified. Each minor allele of the genome-wide associated variants increased the geographic atrophy growth rate by a mean of about 15% or 0.05 mm per year. Gene prioritization within each locus suggests the protein arginine methyltransferase 6 gene (PRMT6; chromosome 1; slope, 0.046 [95% CI, 0.026-0.066]; P = 4.09 × 10-8) and the lanosterol synthase gene (LSS; chromosome 21; slope, 0.105 [95% CI, 0.068-0.143]; P = 4.07 × 10-7) as the most likely progression-associated genes. CONCLUSIONS AND RELEVANCE: These data provide further insight into the genetic architecture of geographic atrophy lesion growth. Geographic atrophy is a clinical outcome with a high medical need for effective therapy. The genes PRMT6 and LSS are promising candidates for future studies aimed at understanding functional aspects of geographic atrophy progression and also for designing novel and targeted treatment options.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA