Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
iScience ; 26(6): 106789, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37213232

RESUMO

Delivery of pharmaceutical therapeutics to the inner ear to treat and prevent hearing loss is challenging. Systemic delivery is not effective as only a small fraction of the therapeutic agent reaches the inner ear. Invasive surgeries to inject through the round window membrane (RWM) or cochleostomy may cause damage to the inner ear. An alternative approach is to administer drugs into the middle ear using an intratympanic injection, with the drugs primarily passing through the RWM to the inner ear. However, the RWM is a barrier, only permeable to a small number of molecules. To study and enhance the RWM permeability, we developed an ex vivo porcine RWM model, similar in structure and thickness to the human RWM. The model is viable for days, and drug passage can be measured at multiple time points. This model provides a straightforward approach to developing effective and non-invasive delivery methods to the inner ear.

2.
Lab Chip ; 16(22): 4350-4358, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27713987

RESUMO

Monitoring yeast cell viability and concentration is important in brewing, baking and biofuel production. However, existing methods of measuring viability and concentration are relatively bulky, tedious and expensive. Here we demonstrate a compact and cost-effective automatic yeast analysis platform (AYAP), which can rapidly measure cell concentration and viability. AYAP is based on digital in-line holography and on-chip microscopy and rapidly images a large field-of-view of 22.5 mm2. This lens-free microscope weighs 70 g and utilizes a partially-coherent illumination source and an opto-electronic image sensor chip. A touch-screen user interface based on a tablet-PC is developed to reconstruct the holographic shadows captured by the image sensor chip and use a support vector machine (SVM) model to automatically classify live and dead cells in a yeast sample stained with methylene blue. In order to quantify its accuracy, we varied the viability and concentration of the cells and compared AYAP's performance with a fluorescence exclusion staining based gold-standard using regression analysis. The results agree very well with this gold-standard method and no significant difference was observed between the two methods within a concentration range of 1.4 × 105 to 1.4 × 106 cells per mL, providing a dynamic range suitable for various applications. This lensfree computational imaging technology that is coupled with machine learning algorithms would be useful for cost-effective and rapid quantification of cell viability and density even in field and resource-poor settings.


Assuntos
Aprendizado de Máquina , Microscopia/economia , Microscopia/instrumentação , Saccharomyces cerevisiae/citologia , Análise Custo-Benefício , Holografia , Fatores de Tempo
3.
ACS Nano ; 9(3): 3265-73, 2015 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-25688665

RESUMO

Sizing individual nanoparticles and dispersions of nanoparticles provides invaluable information in applications such as nanomaterial synthesis, air and water quality monitoring, virology, and medical diagnostics. Several conventional nanoparticle sizing approaches exist; however, there remains a lack of high-throughput approaches that are suitable for low-resource and field settings, i.e., methods that are cost-effective, portable, and can measure widely varying particle sizes and concentrations. Here we fill this gap using an unconventional approach that combines holographic on-chip microscopy with vapor-condensed nanolens self-assembly inside a cost-effective hand-held device. By using this approach and capturing time-resolved in situ images of the particles, we optimize the nanolens formation process, resulting in significant signal enhancement for the label-free detection and sizing of individual deeply subwavelength particles (smaller than λ/10) over a 30 mm(2) sample field-of-view, with an accuracy of ±11 nm. These time-resolved measurements are significantly more reliable than a single measurement at a given time, which was previously used only for nanoparticle detection without sizing. We experimentally demonstrate the sizing of individual nanoparticles as well as viruses, monodisperse samples, and complex polydisperse mixtures, where the sample concentrations can span ∼5 orders-of-magnitude and particle sizes can range from 40 nm to millimeter-scale. We believe that this high-throughput and label-free nanoparticle sizing platform, together with its cost-effective and hand-held interface, will make highly advanced nanoscopic measurements readily accessible to researchers in developing countries and even to citizen-scientists, and might especially be valuable for environmental and biomedical applications as well as for higher education and training programs.


Assuntos
Microscopia/métodos , Nanopartículas/química , Tamanho da Partícula , Análise Custo-Benefício , Holografia , Microscopia/economia , Microscopia/instrumentação , Poliestirenos/química , Volatilização
4.
Sci Transl Med ; 6(267): 267ra175, 2014 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-25520396

RESUMO

Optical examination of microscale features in pathology slides is one of the gold standards to diagnose disease. However, the use of conventional light microscopes is partially limited owing to their relatively high cost, bulkiness of lens-based optics, small field of view (FOV), and requirements for lateral scanning and three-dimensional (3D) focus adjustment. We illustrate the performance of a computational lens-free, holographic on-chip microscope that uses the transport-of-intensity equation, multi-height iterative phase retrieval, and rotational field transformations to perform wide-FOV imaging of pathology samples with comparable image quality to a traditional transmission lens-based microscope. The holographically reconstructed image can be digitally focused at any depth within the object FOV (after image capture) without the need for mechanical focus adjustment and is also digitally corrected for artifacts arising from uncontrolled tilting and height variations between the sample and sensor planes. Using this lens-free on-chip microscope, we successfully imaged invasive carcinoma cells within human breast sections, Papanicolaou smears revealing a high-grade squamous intraepithelial lesion, and sickle cell anemia blood smears over a FOV of 20.5 mm(2). The resulting wide-field lens-free images had sufficient image resolution and contrast for clinical evaluation, as demonstrated by a pathologist's blinded diagnosis of breast cancer tissue samples, achieving an overall accuracy of ~99%. By providing high-resolution images of large-area pathology samples with 3D digital focus adjustment, lens-free on-chip microscopy can be useful in resource-limited and point-of-care settings.


Assuntos
Holografia/métodos , Interpretação de Imagem Assistida por Computador , Procedimentos Analíticos em Microchip/métodos , Microscopia/métodos , Patologia Clínica/métodos , Anemia Falciforme/patologia , Artefatos , Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/patologia , Análise Custo-Benefício , Desenho de Equipamento , Feminino , Custos de Cuidados de Saúde , Holografia/economia , Holografia/instrumentação , Humanos , Dispositivos Lab-On-A-Chip , Procedimentos Analíticos em Microchip/economia , Microscopia/economia , Microscopia/instrumentação , Invasividade Neoplásica , Estadiamento de Neoplasias , Teste de Papanicolaou , Patologia Clínica/economia , Patologia Clínica/instrumentação , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Lesões Intraepiteliais Escamosas Cervicais/patologia , Neoplasias do Colo do Útero/patologia , Esfregaço Vaginal
5.
PLoS One ; 8(9): e76475, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24086742

RESUMO

Based on partially-coherent digital in-line holography, we report a field-portable microscope that can render lensfree colour images over a wide field-of-view of e.g., >20 mm(2). This computational holographic microscope weighs less than 145 grams with dimensions smaller than 17×6×5 cm, making it especially suitable for field settings and point-of-care use. In this lensfree imaging design, we merged a colorization algorithm with a source shifting based multi-height pixel super-resolution technique to mitigate 'rainbow' like colour artefacts that are typical in holographic imaging. This image processing scheme is based on transforming the colour components of an RGB image into YUV colour space, which separates colour information from brightness component of an image. The resolution of our super-resolution colour microscope was characterized using a USAF test chart to confirm sub-micron spatial resolution, even for reconstructions that employ multi-height phase recovery to handle dense and connected objects. To further demonstrate the performance of this colour microscope Papanicolaou (Pap) smears were also successfully imaged. This field-portable and wide-field computational colour microscope could be useful for tele-medicine applications in resource poor settings.


Assuntos
Microscopia/instrumentação , Cor , Análise Custo-Benefício , Desenho de Equipamento , Feminino , Humanos , Esfregaço Vaginal/instrumentação
6.
Anal Cell Pathol (Amst) ; 35(4): 229-47, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22433451

RESUMO

The recent revolution in digital technologies and information processing methods present important opportunities to transform the way optical imaging is performed, particularly toward improving the throughput of microscopes while at the same time reducing their relative cost and complexity. Lensfree computational microscopy is rapidly emerging toward this end, and by discarding lenses and other bulky optical components of conventional imaging systems, and relying on digital computation instead, it can achieve both reflection and transmission mode microscopy over a large field-of-view within compact, cost-effective and mechanically robust architectures. Such high throughput and miniaturized imaging devices can provide a complementary toolset for telemedicine applications and point-of-care diagnostics by facilitating complex and critical tasks such as cytometry and microscopic analysis of e.g., blood smears, Pap tests and tissue samples. In this article, the basics of these lensfree microscopy modalities will be reviewed, and their clinically relevant applications will be discussed.


Assuntos
Técnicas Citológicas/métodos , Diagnóstico por Imagem/métodos , Processamento de Imagem Assistida por Computador/métodos , Sistemas Automatizados de Assistência Junto ao Leito , Algoritmos , Animais , Análise Custo-Benefício , Técnicas Citológicas/economia , Técnicas Citológicas/instrumentação , Diagnóstico por Imagem/economia , Diagnóstico por Imagem/instrumentação , Humanos , Processamento de Imagem Assistida por Computador/economia , Processamento de Imagem Assistida por Computador/instrumentação , Reprodutibilidade dos Testes , Telemedicina/economia , Telemedicina/instrumentação , Telemedicina/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA