Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Mol Metab ; 5(3): 210-220, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26977393

RESUMO

OBJECTIVE: The family of acyl-CoA synthetase enzymes (ACSL) activates fatty acids within cells to generate long chain fatty acyl CoA (FACoA). The differing metabolic fates of FACoAs such as incorporation into neutral lipids, phospholipids, and oxidation pathways are differentially regulated by the ACSL isoforms. In vitro studies have suggested a role for ACSL5 in triglyceride synthesis; however, we have limited understanding of the in vivo actions of this ACSL isoform. METHODS: To elucidate the in vivo actions of ACSL5 we generated a line of mice in which ACSL5 expression was ablated in all tissues (ACSL5 (-/-) ). RESULTS: Ablation of ACSL5 reduced ACSL activity by ∼80% in jejunal mucosa, ∼50% in liver, and ∼37% in brown adipose tissue lysates. Body composition studies revealed that ACSL5 (-/-) , as compared to control ACSL5 (loxP/loxP) , mice had significantly reduced fat mass and adipose fat pad weights. Indirect calorimetry studies demonstrated that ACSL5 (-/-) had increased metabolic rates, and in the dark phase, increased respiratory quotient. In ACSL5 (-/-) mice, fasting glucose and serum triglyceride were reduced; and insulin sensitivity was improved during an insulin tolerance test. Both hepatic mRNA (∼16-fold) and serum levels of fibroblast growth factor 21 (FGF21) (∼13-fold) were increased in ACSL5 (-/-) as compared to ACSL5 (loxP/loxP) . Consistent with increased FGF21 serum levels, uncoupling protein-1 gene (Ucp1) and PPAR-gamma coactivator 1-alpha gene (Pgc1α) transcript levels were increased in gonadal adipose tissue. To further evaluate ACSL5 function in intestine, mice were gavaged with an olive oil bolus; and the rate of triglyceride appearance in serum was found to be delayed in ACSL5 (-/-) mice as compared to control mice. CONCLUSIONS: In summary, ACSL5 (-/-) mice have increased hepatic and serum FGF21 levels, reduced adiposity, improved insulin sensitivity, increased energy expenditure and delayed triglyceride absorption. These studies suggest that ACSL5 is an important regulator of whole-body energy metabolism and ablation of ACSL5 may antagonize the development of obesity and insulin resistance.

2.
Endocrinology ; 150(5): 2161-8, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19179442

RESUMO

Menopause, an age-related loss of ovarian hormone production, promotes increased adiposity and insulin resistance. However, the diet-independent mechanism by which loss of ovarian function promotes increased adipose tissue mass and associated metabolic pathologies remains unclear. To address this question, we monitored food intake and weight gain of ovariectomized (OVX) mice and sham OVX (SHM) mice for 12 wk. Although food intake was similar, OVX mice gained 25% more weight than SHM mice. Moreover, the OVX mice accumulated 4.7- and 4.4-fold more perigonadal and inguinal adipose tissue by weight, respectively, with 4.4-fold (perigonadal, P < 0.001) and 5.3-fold (inguinal, P < 0.01) larger adipocytes and no change in adipocyte cell number. OVX-induced adiposity was coincident with an 18% decrease in metabolic rate during the dark phase (P = 0.001) as well as an 11% decrease during the light phase (P = 0.03). In addition, ambulatory activity levels of OVX mice were decreased only during the dark phase (40%, P = 0.008). OVX mice displayed evidence of immune infiltration and inflammation in adipose tissue, because perigonadal and inguinal adipose depots from OVX mice had increased expression of TNFalpha, iNOS, CD11c, and other hallmarks of adipose tissue inflammation. In contrast, expression of the T cell marker CD3 (3.5-fold, P = 0.03) and Th1 cytokine interferon-gamma (IFNgamma) (2.6-fold, P = 0.02) were elevated in perigonadal but not sc fat. Finally, histology revealed OVX-specific liver hepatic steatosis, coincident with increased PPARgamma gene expression and downstream lipogenic gene expression. In summary, OVX in mice decreases energy expenditure, without altering energy intake, resulting in adipocyte hypertrophy, adipose tissue inflammation, and hepatic steatosis.


Assuntos
Metabolismo Energético , Inflamação/etiologia , Obesidade/etiologia , Ovariectomia/efeitos adversos , Tecido Adiposo/patologia , Animais , Distribuição da Gordura Corporal , Peso Corporal/fisiologia , Ingestão de Energia/fisiologia , Metabolismo Energético/fisiologia , Jejum/sangue , Jejum/metabolismo , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/fisiologia , Obesidade/imunologia , Obesidade/metabolismo , Obesidade/patologia , Tamanho do Órgão , Fatores de Tempo , Útero/patologia
3.
Expert Opin Pharmacother ; 3(5): 529-40, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-11996632

RESUMO

In the last few years there has been an explosion of research that has improved our understanding of the pathogenesis of Type 2 diabetes mellitus (DM-2) and has led to the development of new oral antidiabetic drugs. Thiazolidinediones (TZDs) are the newest of these antidiabetic agents. TZDs are insulin sensitisers that depend on the presence of insulin for their action. They target insulin resistance, which is thought to play a central role in DM-2 and the associated metabolic syndrome characterised by central obesity, hypertension, dyslipidemia and hypercoagulability, all leading to increased cardiovascular morbidity and mortality. As a result, TZDs have the potential to improve other conditions associated with the metabolic syndrome, in addition to their glycaemic action. TZDs act by activating peroxisome proliferator-activated receptor (PPAR) phi a nuclear receptor implicated not only in lipid and glucose metabolism but other physiological functions as well. TZDs may have wide clinical applications beyond DM-2, as they can potentially be used to treat other conditions associated with insulin resistance and PPAR-phi receptors, such as impaired glucose tolerance, polycystic ovarian syndrome and HIV lipodystrophy.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Tiazóis/farmacologia , Tiazóis/uso terapêutico , Tiazolidinedionas , Diabetes Mellitus Tipo 2/etiologia , Humanos , Hipoglicemiantes/economia , Hipoglicemiantes/farmacocinética , Pioglitazona , Ensaios Clínicos Controlados Aleatórios como Assunto , Rosiglitazona , Tiazóis/economia , Tiazóis/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA