Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Cytotherapy ; 22(11): 677-689, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32723596

RESUMO

BACKGROUND AIMS: Mesenchymal stem/stromal cell (MSC)-based therapies have gained attention as potential alternatives for multiple musculoskeletal indications based on their trophic and immunomodulatory properties. The infrapatellar fat pad (IFP) serves as a reservoir of MSCs, which play crucial roles modulating inflammatory and fibrotic events at the IFP and its neighboring tissue, the synovium. In an effort to comply with the existing regulatory framework regarding cell-based product manufacturing, we interrogated the in vitro immunomodulatory capacity of human-derived IFP-MSCs processed under different conditions, including a regulatory-compliant protocol, in addition to their response to the inflammatory and fibrotic environments often present in joint disease. METHODS: Immunophenotype, telomere length, transcriptional and secretory immunomodulatory profiles and functional immunopotency assay were assessed in IFP-MSCs expanded in regular fetal bovine serum (FBS)-supplemented medium and side-by-side compared with same-donor cells processed with two media alternatives (i.e., regulatory-compliant pooled human platelet lysate [hPL] and a chemically reinforced/serum-reduced [Ch-R] formulation). Finally, to assess the effects of such formulations on the ability of the cells to respond to pro-inflammatory and pro-fibrotic conditions, all three groups were stimulated ex vivo (i.e., cell priming) with a cocktail containing TNFα, IFNγ and connective tissue growth factor (tumor-initiating cells) and compared with non-induced cohorts assessing the same outcomes. RESULTS: Non-induced and primed IFP-MSCs expanded in either hPL or Ch-R showed distinct morphology in vitro, similar telomere dynamics and distinct phenotypical and molecular profiles when compared with cohorts grown in FBS. Gene expression of IL-8, CD10 and granulocyte colony-stimulating factor was highly enriched in similarly processed IFP-MSCs. Cell surface markers related to the immunomodulatory capacity, including CD146 and CD10, were highly expressed, and secretion of immunomodulatory and pro-angiogenic factors was significantly enhanced with both hPL and Ch-R formulations. Upon priming, the immunomodulatory phenotype was enhanced, resulting in further increase in CD146 and CD10, significant CXCR4 presence and reduction in TLR3. Similarly, transcriptional and secretory profiles were enriched and more pronounced in IFP-MSCs expanded in either hPL or Ch-R, suggesting a synergistic effect between these formulations and inflammatory/fibrotic priming conditions. Collectively, increased indoleamine-2,3-dioxygenase activity and prostaglandin E2 secretion for hPL- and Ch-R-expanded IFP-MSCs were functionally reflected by their robust T-cell proliferation suppression capacity in vitro compared with IFP-MSCs expanded in FBS, even after priming. CONCLUSIONS: Compared with processing using an FBS-supplemented medium, processing IFP-MSCs with either hPL or Ch-R similarly enhances their immunomodulatory properties, which are further increased after exposure to an inflammatory/fibrotic priming environment. This evidence supports the adoption of regulatory-compliant practices during the manufacturing of a cell-based product based on IFP-MSCs and anticipates a further enhanced response once the cells face the pathological environment after intra-articular administration. Mechanistically, the resulting functionally enhanced cell-based product has potential utilization as a novel, minimally invasive cell therapy for joint disease through modulation of local immune and inflammatory events.


Assuntos
Tecido Adiposo/citologia , Imunomodulação , Células-Tronco Mesenquimais/citologia , Patela/anatomia & histologia , Controle Social Formal , Adulto , Plaquetas/citologia , Plaquetas/efeitos dos fármacos , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Meios de Cultura/farmacologia , Citocinas/metabolismo , Feminino , Humanos , Imunomodulação/efeitos dos fármacos , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Neovascularização Fisiológica/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Soro , Transcrição Gênica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA