Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS One ; 18(2): e0281442, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36787300

RESUMO

Microbial nitrogen (N) cycling pathways are largely responsible for producing forms of N that are available for plant uptake or lost from the system as gas or leachate. The temporal dynamics of microbial N pathways in tropical agroecosystems are not well defined, even though they are critical to understanding the potential impact of soil conservation strategies. We aimed to 1) characterize temporal changes in functional gene associations across a seasonal gradient, 2) identify keystone genes that play a central role in connecting N cycle functions, and 3) detect gene co-occurrences that remained stable over time. Soil samples (n = 335) were collected from two replicated field trials in Rwanda between September 2020 and March 2021. We found high variability among N-cycle gene relationships and network properties that was driven more by sampling timepoint than by location. Two nitrification gene targets, hydroxylamine oxidoreductase and nitrite oxidoreductase, co-occurred across all timepoints, indicating that they may be ideal year-round targets to limit nitrification in rainfed agricultural soils. We also found that gene keystoneness varied across time, suggesting that management practices to enhance N-cycle functions such as the application of nitrification inhibitors could be adapted to seasonal conditions. Our results mark an important first step in employing gene networks to infer function in soil biogeochemical cycles, using a tropical seasonal gradient as a model system.


Assuntos
Redes Reguladoras de Genes , Solo , Solo/química , Microbiologia do Solo , Agricultura , Nitrificação , Nitrogênio/metabolismo
2.
PLoS One ; 15(4): e0231032, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32271795

RESUMO

The incorporation of cover crops into the maize (Zea mays L.)-soybean [Glycine max (L.) Merr.] rotation in the U.S. upper Midwest may improve sustainability. Long, cold winters in the region make identifying successful cover crop species and management practices a challenge. Two experiments were conducted in Minnesota, USA from fall 2016 through spring 2019 to examine the effect of cover crops interseeded at four- to six-leaf collar (early-interseeded) and dent to physiological maturity (late-interseeded) on biomass and grain yield of maize. Annual ryegrass (Lolium multiflorum L.) and cereal rye (Secale cereale L.) were evaluated as monocultures and in mixtures with crimson clover (Trifolium incarnatum L.) and forage radish (Raphanus sativus L.). Differences in canopy cover and biomass of late-interseeded cover crops were observed at the southernmost location in 2018. Additional accumulated growing-degree days in fall 2018 did not translate into increased cover crop canopy coverage of late-interseeded cover crops. Differences in cover crop canopy cover and biomass of early-interseeded cover crops were observed by fall frost at all locations in 2017 and at the northernmost location in 2018. Cover crop canopy cover and biomass at termination before planting maize, soil moisture at maize planting as well as maize aboveground biomass and yield were not affected by spring cereal rye regrowth of cover crops late-interseeded the previous year. Similarly, early-interseeded cover crops did not affect maize aboveground biomass or yield. We attribute these results to limited cover crop growth. This highlights the potential of a variety of cover crop strategies interseeded into maize in the U.S. upper Midwest; however, efforts to fine-tuning cover crop management and weather conditions are needed to benefit from such practice.


Assuntos
Produção Agrícola/métodos , Produtos Agrícolas/crescimento & desenvolvimento , Zea mays/crescimento & desenvolvimento , Biomassa , Lolium/crescimento & desenvolvimento , Minnesota , Raphanus/crescimento & desenvolvimento , Secale/crescimento & desenvolvimento , Desenvolvimento Sustentável , Trifolium/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA