Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bioinformatics ; 35(23): 5011-5017, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31077287

RESUMO

MOTIVATION: One of the main goals in systems biology is to learn molecular regulatory networks from quantitative profile data. In particular, Gaussian graphical models (GGMs) are widely used network models in bioinformatics where variables (e.g. transcripts, metabolites or proteins) are represented by nodes, and pairs of nodes are connected with an edge according to their partial correlation. Reconstructing a GGM from data is a challenging task when the sample size is smaller than the number of variables. The main problem consists in finding the inverse of the covariance estimator which is ill-conditioned in this case. Shrinkage-based covariance estimators are a popular approach, producing an invertible 'shrunk' covariance. However, a proper significance test for the 'shrunk' partial correlation (i.e. the GGM edges) is an open challenge as a probability density including the shrinkage is unknown. In this article, we present (i) a geometric reformulation of the shrinkage-based GGM, and (ii) a probability density that naturally includes the shrinkage parameter. RESULTS: Our results show that the inference using this new 'shrunk' probability density is as accurate as Monte Carlo estimation (an unbiased non-parametric method) for any shrinkage value, while being computationally more efficient. We show on synthetic data how the novel test for significance allows an accurate control of the Type I error and outperforms the network reconstruction obtained by the widely used R package GeneNet. This is further highlighted in two gene expression datasets from stress response in Eschericha coli, and the effect of influenza infection in Mus musculus. AVAILABILITY AND IMPLEMENTATION: https://github.com/V-Bernal/GGM-Shrinkage. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , Software , Animais , Camundongos , Método de Monte Carlo , Distribuição Normal , Biologia de Sistemas
2.
Bioinformatics ; 27(5): 693-9, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-21177328

RESUMO

METHOD: Dynamic Bayesian networks (DBNs) have been applied widely to reconstruct the structure of regulatory processes from time series data, and they have established themselves as a standard modelling tool in computational systems biology. The conventional approach is based on the assumption of a homogeneous Markov chain, and many recent research efforts have focused on relaxing this restriction. An approach that enjoys particular popularity is based on a combination of a DBN with a multiple changepoint process, and the application of a Bayesian inference scheme via reversible jump Markov chain Monte Carlo (RJMCMC). In the present article, we expand this approach in two ways. First, we show that a dynamic programming scheme allows the changepoints to be sampled from the correct conditional distribution, which results in improved convergence over RJMCMC. Second, we introduce a novel Bayesian clustering and information sharing scheme among nodes, which provides a mechanism for automatic model complexity tuning. RESULTS: We evaluate the dynamic programming scheme on expression time series for Arabidopsis thaliana genes involved in circadian regulation. In a simulation study we demonstrate that the regularization scheme improves the network reconstruction accuracy over that obtained with recently proposed inhomogeneous DBNs. For gene expression profiles from a synthetically designed Saccharomyces cerevisiae strain under switching carbon metabolism we show that the combination of both: dynamic programming and regularization yields an inference procedure that outperforms two alternative established network reconstruction methods from the biology literature. AVAILABILITY AND IMPLEMENTATION: A MATLAB implementation of the algorithm and a supplementary paper with algorithmic details and further results for the Arabidopsis data can be downloaded from: http://www.statistik.tu-dortmund.de/bio2010.html.


Assuntos
Algoritmos , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Arabidopsis/genética , Teorema de Bayes , Análise por Conglomerados , Cadeias de Markov , Modelos Estatísticos , Método de Monte Carlo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
3.
Methods Mol Biol ; 662: 121-47, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20824469

RESUMO

The extraction of regulatory networks and pathways from postgenomic data is important for drug -discovery and development, as the extracted pathways reveal how genes or proteins regulate each other. Following up on the seminal paper of Friedman et al. (J Comput Biol 7:601-620, 2000), Bayesian networks have been widely applied as a popular tool to this end in systems biology research. Their popularity stems from the tractability of the marginal likelihood of the network structure, which is a consistent scoring scheme in the Bayesian context. This score is based on an integration over the entire parameter space, for which highly expensive computational procedures have to be applied when using more complex -models based on differential equations; for example, see (Bioinformatics 24:833-839, 2008). This chapter gives an introduction to reverse engineering regulatory networks and pathways with Gaussian Bayesian networks, that is Bayesian networks with the probabilistic BGe scoring metric [see (Geiger and Heckerman 235-243, 1995)]. In the BGe model, the data are assumed to stem from a Gaussian distribution and a normal-Wishart prior is assigned to the unknown parameters. Gaussian Bayesian network methodology for analysing static observational, static interventional as well as dynamic (observational) time series data will be described in detail in this chapter. Finally, we apply these Bayesian network inference methods (1) to observational and interventional flow cytometry (protein) data from the well-known RAF pathway to evaluate the global network reconstruction accuracy of Bayesian network inference and (2) to dynamic gene expression time series data of nine circadian genes in Arabidopsis thaliana to reverse engineer the unknown regulatory network topology for this domain.


Assuntos
Teorema de Bayes , Distribuição Normal , Arabidopsis/citologia , Arabidopsis/enzimologia , Arabidopsis/genética , Arabidopsis/fisiologia , Área Sob a Curva , Ritmo Circadiano/genética , Genes de Plantas , Cadeias de Markov , Método de Monte Carlo , Transdução de Sinais , Quinases raf/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA