Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Radiat Res ; 65(2): 215-222, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38331401

RESUMO

Several materials are utilized in the production of bolus, which is essential for superficial tumor radiotherapy. This research aimed to compare the variations in dose deposition in deep tissues during electron beam radiotherapy when employing different bolus materials. Specifically, the study developed general superficial tumor models (S-T models) and postoperative breast cancer models (P-B models). Each model comprised a bolus made of water, polylactic acid (PLA), polystyrene, silica-gel or glycerol. Geant4 was employed to simulate the transportation of electron beams within the studied models, enabling the acquisition of dose distributions along the central axis of the field. A comparison was conducted to assess the dose distributions in deep tissues. In regions where the percentage depth dose (PDD) decreases rapidly, the relative doses (RDs) in the S-T models with silica-gel bolus exhibited the highest values. Subsequently, RDs for PLA, glycerol and polystyrene boluses followed in descending order. Notably, the RDs for glycerol and polystyrene boluses were consistently below 1. Within the P-B models, RDs for all four bolus materials are consistently below 1. Among them, the smallest RDs are observed with the glycerol bolus, followed by silica-gel, PLA and polystyrene bolus in ascending order. As PDDs are ~1-3% or smaller, the differences in RDs diminish rapidly until are only around 10%. For the S-T and P-B models, polystyrene and glycerol are the most suitable bolus materials, respectively. The choice of appropriate bolus materials, tailored to the specific treatment scenario, holds significant importance in safeguarding deep tissues during radiotherapy.


Assuntos
Elétrons , Neoplasias , Humanos , Dosagem Radioterapêutica , Poliestirenos , Glicerol , Planejamento da Radioterapia Assistida por Computador , Poliésteres , Dióxido de Silício , Método de Monte Carlo , Imagens de Fantasmas
3.
IEEE Trans Image Process ; 31: 2279-2294, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35239481

RESUMO

Numerous single image super-resolution (SISR) algorithms have been proposed during the past years to reconstruct a high-resolution (HR) image from its low-resolution (LR) observation. However, how to fairly compare the performance of different SISR algorithms/results remains a challenging problem. So far, the lack of comprehensive human subjective study on large-scale real-world SISR datasets and accurate objective SISR quality assessment metrics makes it unreliable to truly understand the performance of different SISR algorithms. We in this paper make efforts to tackle these two issues. Firstly, we construct a real-world SISR quality dataset (i.e., RealSRQ) and conduct human subjective studies to compare the performance of the representative SISR algorithms. Secondly, we propose a new objective metric, i.e., KLTSRQA, based on the Karhunen-Loéve Transform (KLT) to evaluate the quality of SISR images in a no-reference (NR) manner. Experiments on our constructed RealSRQ and the latest synthetic SISR quality dataset (i.e., QADS) have demonstrated the superiority of our proposed KLTSRQA metric, achieving higher consistency with human subjective scores than relevant existing NR image quality assessment (NR-IQA) metrics. The dataset and the code will be made available at https://github.com/Zhentao-Liu/RealSRQ-KLTSRQA.


Assuntos
Algoritmos , Redes Neurais de Computação , Benchmarking , Humanos
4.
IEEE J Biomed Health Inform ; 26(5): 2020-2031, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34990371

RESUMO

The booming Internet of Things makes smart healthcare a reality, while cloud-based medical storage systems solve the problems of large-scale storage and real-time access of medical data. The integrity of medical data outsourced in cloud-based medical storage systems has become crucial since only complete data can make a correct diagnosis, and public auditing protocol is a key technique to solve this problem. To guarantee the integrity of medical data and reduce the burden of the data owner, we propose an efficient privacy-preserving public auditing protocol for the cloud-based medical storage systems, which supports the functions of batch auditing and dynamic update of data. Detailed security analysis shows that our protocol is secure under the defined security model. In addition, we have conducted extensive performance evaluations, and the results indicate that our protocol not only remarkably reduces the computational costs of both the data owner and the third-party auditor (TPA), but also significantly improves the communication efficiency between the TPA and the cloud server. Specifically, compared with other related work, the computational cost of the TPA in our protocol is negligible and the data owner saves more than 2/3 of computational cost. In addition, as the number of challenged blocks increases, our protocol saves nearly 90% of communication overhead between the TPA and the cloud server.


Assuntos
Computação em Nuvem , Serviços Terceirizados , Segurança Computacional , Confidencialidade , Atenção à Saúde , Humanos , Privacidade
5.
IEEE Trans Image Process ; 28(11): 5336-5351, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31021766

RESUMO

Sonar imagery plays a significant role in oceanic applications since there is little natural light underwater, and light is irrelevant to sonar imaging. Sonar images are very likely to be affected by various distortions during the process of transmission via the underwater acoustic channel for further analysis. At the receiving end, the reference image is unavailable due to the complex and changing underwater environment and our unfamiliarity with it. To the best of our knowledge, one of the important usages of sonar images is target recognition on the basis of contour information. The contour degradation degree for a sonar image is relevant to the distortions contained in it. To this end, we developed a new no-reference contour degradation measurement for perceiving the quality of sonar images. The sparsities of a series of transform coefficient matrices, which are descriptive of contour information, are first extracted as features from the frequency and spatial domains. The contour degradation degree for a sonar image is then measured by calculating the ratios of extracted features before and after filtering this sonar image. Finally, a bootstrap aggregating (bagging)-based support vector regression module is learned to capture the relationship between the contour degradation degree and the sonar image quality. The results of experiments validate that the proposed metric is competitive with the state-of-the-art reference-based quality metrics and outperforms the latest reference-free competitors.

6.
IEEE Comput Graph Appl ; 38(1): 47-58, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-27244723

RESUMO

Screen content image (SCI) has recently emerged as an active topic due to the rapidly increasing demand in many graphically rich services such as wireless displays and virtual desktops. SCIs are often composed of pictorial regions and computer generated textual/graphical content, which exhibit different statistical properties that often lead to different viewer behaviors. Inspired by this, we propose an objective quality assessment approach for SCIs that incorporates both visual field adaptation and information content weighting into structural similarity based local quality assessment. Furthermore, we develop a perceptual screen content coding scheme based on the newly proposed quality assessment measure, targeting at further improving the SCI compression performance. Experimental results show that the proposed quality assessment method not only better predicts the perceptual quality of SCIs, but also demonstrates great potentials in the design of perceptually optimal SCI compression schemes.

7.
IEEE Trans Neural Netw Learn Syst ; 29(4): 1301-1313, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28287984

RESUMO

In this paper, we investigate into the problem of image quality assessment (IQA) and enhancement via machine learning. This issue has long attracted a wide range of attention in computational intelligence and image processing communities, since, for many practical applications, e.g., object detection and recognition, raw images are usually needed to be appropriately enhanced to raise the visual quality (e.g., visibility and contrast). In fact, proper enhancement can noticeably improve the quality of input images, even better than originally captured images, which are generally thought to be of the best quality. In this paper, we present two most important contributions. The first contribution is to develop a new no-reference (NR) IQA model. Given an image, our quality measure first extracts 17 features through analysis of contrast, sharpness, brightness and more, and then yields a measure of visual quality using a regression module, which is learned with big-data training samples that are much bigger than the size of relevant image data sets. The results of experiments on nine data sets validate the superiority and efficiency of our blind metric compared with typical state-of-the-art full-reference, reduced-reference and NA IQA methods. The second contribution is that a robust image enhancement framework is established based on quality optimization. For an input image, by the guidance of the proposed NR-IQA measure, we conduct histogram modification to successively rectify image brightness and contrast to a proper level. Thorough tests demonstrate that our framework can well enhance natural images, low-contrast images, low-light images, and dehazed images. The source code will be released at https://sites.google.com/site/guke198701/publications.

8.
IEEE Trans Cybern ; 46(1): 284-97, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25775503

RESUMO

Proper contrast change can improve the perceptual quality of most images, but it has largely been overlooked in the current research of image quality assessment (IQA). To fill this void, we in this paper first report a new large dedicated contrast-changed image database (CCID2014), which includes 655 images and associated subjective ratings recorded from 22 inexperienced observers. We then present a novel reduced-reference image quality metric for contrast change (RIQMC) using phase congruency and statistics information of the image histogram. Validation of the proposed model is conducted on contrast related CCID2014, TID2008, CSIQ and TID2013 databases, and results justify the superiority and efficiency of RIQMC over a majority of classical and state-of-the-art IQA methods. Furthermore, we combine aforesaid subjective and objective assessments to derive the RIQMC based Optimal HIstogram Mapping (ROHIM) for automatic contrast enhancement, which is shown to outperform recently developed enhancement technologies.

9.
IEEE Trans Image Process ; 24(10): 3218-31, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26054063

RESUMO

In this paper, we propose a new no-reference (NR)/blind sharpness metric in the autoregressive (AR) parameter space. Our model is established via the analysis of AR model parameters, first calculating the energy- and contrast-differences in the locally estimated AR coefficients in a pointwise way, and then quantifying the image sharpness with percentile pooling to predict the overall score. In addition to the luminance domain, we further consider the inevitable effect of color information on visual perception to sharpness and thereby extend the above model to the widely used YIQ color space. Validation of our technique is conducted on the subsets with blurring artifacts from four large-scale image databases (LIVE, TID2008, CSIQ, and TID2013). Experimental results confirm the superiority and efficiency of our method over existing NR algorithms, the stateof-the-art blind sharpness/blurriness estimators, and classical full-reference quality evaluators. Furthermore, the proposed metric can be also extended to stereoscopic images based on binocular rivalry, and attains remarkably high performance on LIVE3D-I and LIVE3D-II databases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA