Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PeerJ ; 12: e16738, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38390391

RESUMO

The existence of coastal ecosystems depends on their ability to gain sediment and keep pace with sea level rise. Similar to other coastal areas, Northeast Florida (United States) is experiencing rapid population growth, climate change, and shifting wetland communities. Rising seas and more severe storms, coupled with the intensification of human activities, can modify the biophysical environment, thereby increasing coastal exposure to storm-induced erosion and inundation. Using the Guana Tolomato Matanzas National Estuarine Research Reserve as a case study, we analyzed the distribution of coastal protection services-expressly, wave attenuation and sediment control-provided by estuarine habitats inside a dynamic Intracoastal waterway. We explored six coastal variables that contribute to coastal flooding and erosion-(a) relief, (b) geomorphology, (c) estuarine habitats, (d) wind exposure, (e) boat wake energy, and (f) storm surge potential-to assess physical exposure to coastal hazards. The highest levels of coastal exposure were found in the north and south sections of the Reserve (9% and 14%, respectively) compared to only 4% in the central, with exposure in the south driven by low wetland elevation, high surge potential, and shorelines composed of less stable sandy and muddy substrate. The most vulnerable areas of the central Reserve and main channel of the Intracoastal waterway were exposed to boat wakes from larger vessels frequently traveling at medium speeds (10-20 knots) and had shoreline segments oriented towards the prevailing winds (north-northeast). To guide management for the recently expanded Reserve into vulnerable areas near the City of Saint Augustine, we evaluated six sites of concern where the current distribution of estuarine habitats (mangroves, salt marshes, and oyster beds) likely play the greatest role in natural protection. Spatially explicit outputs also identified potential elevation maintenance strategies such as living shorelines, landform modification, and mangrove establishment for providing coastal risk-reduction and other ecosystem-service co-benefits. Salt marshes and mangroves in two sites of the central section (N-312 and S-312) were found to protect more than a one-quarter of their cross-shore length (27% and 73%, respectively) from transitioning to the highest exposure category. Proposed interventions for mangrove establishment and living shorelines could help maintain elevation in these sites of concern. This work sets the stage for additional research, education, and outreach about where mangroves, salt marshes, and oyster beds are most likely to reduce risk to wetland communities in the region.


Assuntos
Ecossistema , Áreas Alagadas , Humanos , Elevação do Nível do Mar , Mudança Climática , Florida
2.
Integr Environ Assess Manag ; 12(2): 328-44, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26123999

RESUMO

Businesses may be missing opportunities to account for ecosystem services in their decisions, because they do not have methods to quantify and value ecosystem services. We developed a method to quantify and value coastal protection and other ecosystem services in the context of a cost-benefit analysis of hurricane risk mitigation options for a business. We first analyze linked biophysical and economic models to examine the potential protection provided by marshes. We then applied this method to The Dow Chemical Company's Freeport, Texas facility to evaluate natural (marshes), built (levee), and hybrid (marshes and a levee designed for marshes) defenses against a 100-y hurricane. Model analysis shows that future sea-level rise decreases marsh area, increases flood heights, and increases the required levee height (12%) and cost (8%). In this context, marshes do not provide sufficient protection to the facility, located 12 km inland, to warrant a change in levee design for a 100-y hurricane. Marshes do provide some protection near shore and under smaller storm conditions, which may help maintain the coastline and levee performance in the face of sea-level rise. In sum, the net present value to the business of built defenses ($217 million [2010 US$]) is greater than natural defenses ($15 million [2010 US$]) and similar to the hybrid defense scenario ($229 million [2010 US$]). Examination of a sample of public benefits from the marshes shows they provide at least $117 million (2010 US$) in coastal protection, recreational value, and C sequestration to the public, while supporting 12 fisheries and more than 300 wildlife species. This study provides information on where natural defenses may be effective and a replicable approach that businesses can use to incorporate private, as well as public, ecosystem service values into hurricane risk management at other sites.


Assuntos
Conservação dos Recursos Naturais/economia , Tempestades Ciclônicas , Ecossistema , Análise Custo-Benefício , Modelos Teóricos , Risco , Áreas Alagadas
3.
PLoS One ; 7(11): e47598, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23144824

RESUMO

Many hope that ocean waves will be a source for clean, safe, reliable and affordable energy, yet wave energy conversion facilities may affect marine ecosystems through a variety of mechanisms, including competition with other human uses. We developed a decision-support tool to assist siting wave energy facilities, which allows the user to balance the need for profitability of the facilities with the need to minimize conflicts with other ocean uses. Our wave energy model quantifies harvestable wave energy and evaluates the net present value (NPV) of a wave energy facility based on a capital investment analysis. The model has a flexible framework and can be easily applied to wave energy projects at local, regional, and global scales. We applied the model and compatibility analysis on the west coast of Vancouver Island, British Columbia, Canada to provide information for ongoing marine spatial planning, including potential wave energy projects. In particular, we conducted a spatial overlap analysis with a variety of existing uses and ecological characteristics, and a quantitative compatibility analysis with commercial fisheries data. We found that wave power and harvestable wave energy gradually increase offshore as wave conditions intensify. However, areas with high economic potential for wave energy facilities were closer to cable landing points because of the cost of bringing energy ashore and thus in nearshore areas that support a number of different human uses. We show that the maximum combined economic benefit from wave energy and other uses is likely to be realized if wave energy facilities are sited in areas that maximize wave energy NPV and minimize conflict with existing ocean uses. Our tools will help decision-makers explore alternative locations for wave energy facilities by mapping expected wave energy NPV and helping to identify sites that provide maximal returns yet avoid spatial competition with existing ocean uses.


Assuntos
Energia Renovável/economia , Movimentos da Água , Algoritmos , Colúmbia Britânica , Conservação dos Recursos Naturais , Técnicas de Apoio para a Decisão , Eletricidade , Meio Ambiente , Pesqueiros/estatística & dados numéricos , Humanos , Oceanos e Mares , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA