Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Proteins ; 88(8): 986-998, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31746034

RESUMO

Computational structural prediction of macromolecular interactions is a fundamental tool toward the global understanding of cellular processes. The Critical Assessment of PRediction of Interactions (CAPRI) community-wide experiment provides excellent opportunities for blind testing computational docking methods and includes original targets, thus widening the range of docking applications. Our participation in CAPRI rounds 38 to 45 enabled us to expand the way we include evolutionary information in structural predictions beyond our standard free docking InterEvDock pipeline. InterEvDock integrates a coarse-grained potential that accounts for interface coevolution based on joint multiple sequence alignments of two protein partners (co-alignments). However, even though such co-alignments could be built for none of the CAPRI targets in rounds 38 to 45, including host-pathogen and protein-oligosaccharide complexes and a redesigned interface, we identified multiple strategies that can be used to incorporate evolutionary constraints, which helped us to identify the most likely macromolecular binding modes. These strategies include template-based modeling where only local adjustments should be applied when query-template sequence identity is above 30% and larger perturbations are needed below this threshold; covariation-based structure prediction for individual protein partners; and the identification of evolutionarily conserved and structurally recurrent anchoring interface motifs. Overall, we submitted correct predictions among the top 5 models for 12 out of 19 interface challenges, including four High- and five Medium-quality predictions. Our top 20 models included correct predictions for three out of the five targets we missed in the top 5, including two targets for which misleading biological data led us to downgrade correct free docking models.


Assuntos
Simulação de Acoplamento Molecular , Oligossacarídeos/química , Peptídeos/química , Proteínas/química , Software , Sequência de Aminoácidos , Sítios de Ligação , Humanos , Ligantes , Oligossacarídeos/metabolismo , Peptídeos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Multimerização Proteica , Proteínas/metabolismo , Projetos de Pesquisa , Homologia Estrutural de Proteína
2.
Bioinformatics ; 32(24): 3760-3767, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27551106

RESUMO

MOTIVATION: Protein-protein docking methods are of great importance for understanding interactomes at the structural level. It has become increasingly appealing to use not only experimental structures but also homology models of unbound subunits as input for docking simulations. So far we are missing a large scale assessment of the success of rigid-body free docking methods on homology models. RESULTS: We explored how we could benefit from comparative modelling of unbound subunits to expand docking benchmark datasets. Starting from a collection of 3157 non-redundant, high X-ray resolution heterodimers, we developed the PPI4DOCK benchmark containing 1417 docking targets based on unbound homology models. Rigid-body docking by Zdock showed that for 1208 cases (85.2%), at least one correct decoy was generated, emphasizing the efficiency of rigid-body docking in generating correct assemblies. Overall, the PPI4DOCK benchmark contains a large set of realistic cases and provides new ground for assessing docking and scoring methodologies. AVAILABILITY AND IMPLEMENTATION: Benchmark sets can be downloaded from http://biodev.cea.fr/interevol/ppi4dock/ CONTACT: guerois@cea.frSupplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Biologia Computacional/métodos , Simulação de Acoplamento Molecular , Proteínas/química , Algoritmos , Ligação Proteica
3.
Bioinformatics ; 31(23): 3850-2, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26231431

RESUMO

MOTIVATION: The HHsearch algorithm, implementing a hidden Markov model (HMM)-HMM alignment method, has shown excellent alignment performance in the so-called twilight zone (target-template sequence identity with ∼20%). However, an optimal alignment by HHsearch may contain small to large errors, leading to poor structure prediction if these errors are located in important structural elements. RESULTS: HHalign-Kbest server runs a full pipeline, from the generation of suboptimal HMM-HMM alignments to the evaluation of the best structural models. In the HHsearch framework, it implements a novel algorithm capable of generating k-best HMM-HMM suboptimal alignments rather than only the optimal one. For large proteins, a directed acyclic graph-based implementation reduces drastically the memory usage. Improved alignments were systematically generated among the top k suboptimal alignments. To recognize them, corresponding structural models were systematically generated and evaluated with Qmean score. The method was benchmarked over 420 targets from the SCOP30 database. In the range of HHsearch probability of 20-99%, average quality of the models (TM-score) raised by 4.1-16.3% and 8.0-21.0% considering the top 1 and top 10 best models, respectively. AVAILABILITY AND IMPLEMENTATION: http://bioserv.rpbs.univ-paris-diderot.fr/services/HHalign-Kbest/ (source code and server). CONTACT: guerois@cea.fr. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Alinhamento de Sequência/métodos , Software , Homologia Estrutural de Proteína , Algoritmos , Cadeias de Markov , Modelos Moleculares , Análise de Sequência de Proteína
4.
Bioinformatics ; 23(22): 3095-7, 2007 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-17921492

RESUMO

Recent development of strategies using multiple sequence alignments (MSA) or profiles to detect remote homologies between proteins has led to a significant increase in the number of proteins whose structures can be generated by comparative modeling methods. However, prediction of the optimal alignment between these highly divergent homologous proteins remains a difficult issue. We present a tool based on a generalized Viterbi algorithm that generates optimal and sub-optimal alignments between a sequence and a Hidden Markov Model. The tool is implemented as a new function within the HMMER package called hmmkalign.


Assuntos
Algoritmos , Proteínas/química , Alinhamento de Sequência/métodos , Análise de Sequência de Proteína/métodos , Software , Cadeias de Markov , Reconhecimento Automatizado de Padrão/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA