Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Nutr Food Res ; 67(23): e2200661, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37840378

RESUMO

The Senate Commission on Food Safety (SKLM) of the German Research Foundation (DFG) has reviewed the currently available data in order to assess the health risks associated with the use of acetaldehyde as a flavoring substance in foods. Acetaldehyde is genotoxic in vitro. Following oral intake of ethanol or inhalation exposure to acetaldehyde, systemic genotoxic effects of acetaldehyde in vivo cannot be ruled out (induction of DNA adducts and micronuclei). At present, the key question of whether acetaldehyde is genotoxic and mutagenic in vivo after oral exposure cannot be answered conclusively. There is also insufficient data on human exposure. Consequently, it is currently not possible to reliably assess the health risk associated with the use of acetaldehyde as a flavoring substance. However, considering the genotoxic potential of acetaldehyde as well as numerous data gaps that need to be filled to allow a comprehensive risk assessment, the SKLM considers that the use of acetaldehyde as a flavoring may pose a safety concern. For reasons of precautionary consumer protection, the SKLM recommends that the scientific base for approval of the intentional addition of acetaldehyde to foods as a flavoring substance should be reassessed.


Assuntos
Acetaldeído , Aditivos Alimentares , Humanos , Acetaldeído/toxicidade , Medição de Risco , Alimentos
2.
Arch Toxicol ; 94(9): 3347, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32696078

RESUMO

The author would like to thank N. Bakhiya, S. Hessel-Pras, B. Sachse, and B. Dusemund for their support in the chapter about pyrrolizidine alkaloids.

3.
Arch Toxicol ; 94(6): 1787-1877, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32542409

RESUMO

The risk assessment of chemical carcinogens is one major task in toxicology. Even though exposure has been mitigated effectively during the last decades, low levels of carcinogenic substances in food and at the workplace are still present and often not completely avoidable. The distinction between genotoxic and non-genotoxic carcinogens has traditionally been regarded as particularly relevant for risk assessment, with the assumption of the existence of no-effect concentrations (threshold levels) in case of the latter group. In contrast, genotoxic carcinogens, their metabolic precursors and DNA reactive metabolites are considered to represent risk factors at all concentrations since even one or a few DNA lesions may in principle result in mutations and, thus, increase tumour risk. Within the current document, an updated risk evaluation for genotoxic carcinogens is proposed, based on mechanistic knowledge regarding the substance (group) under investigation, and taking into account recent improvements in analytical techniques used to quantify DNA lesions and mutations as well as "omics" approaches. Furthermore, wherever possible and appropriate, special attention is given to the integration of background levels of the same or comparable DNA lesions. Within part A, fundamental considerations highlight the terms hazard and risk with respect to DNA reactivity of genotoxic agents, as compared to non-genotoxic agents. Also, current methodologies used in genetic toxicology as well as in dosimetry of exposure are described. Special focus is given on the elucidation of modes of action (MOA) and on the relation between DNA damage and cancer risk. Part B addresses specific examples of genotoxic carcinogens, including those humans are exposed to exogenously and endogenously, such as formaldehyde, acetaldehyde and the corresponding alcohols as well as some alkylating agents, ethylene oxide, and acrylamide, but also examples resulting from exogenous sources like aflatoxin B1, allylalkoxybenzenes, 2-amino-3,8-dimethylimidazo[4,5-f] quinoxaline (MeIQx), benzo[a]pyrene and pyrrolizidine alkaloids. Additionally, special attention is given to some carcinogenic metal compounds, which are considered indirect genotoxins, by accelerating mutagenicity via interactions with the cellular response to DNA damage even at low exposure conditions. Part C finally encompasses conclusions and perspectives, suggesting a refined strategy for the assessment of the carcinogenic risk associated with an exposure to genotoxic compounds and addressing research needs.


Assuntos
Carcinógenos/toxicidade , Dano ao DNA , Mutagênicos/toxicidade , Animais , Testes de Carcinogenicidade , Humanos , Testes de Mutagenicidade , Medição de Risco , Toxicogenética
4.
Mol Nutr Food Res ; 55(5): 807-10, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21433281

RESUMO

The DFG Senate Commission on Food Safety (SKLM) has discussed the toxicological assessment of furanocoumarins in foodstuffs and adopted an opinion on 23/24 September 2004 [SKLM, English version: Toxicological assessment of furanocumarins in foodstuffs, 2006; Mol. Nutr. Food Res. 2007, 51, 367-373]. At that time, no analytical data were available on the occurrence and content of furanocoumarins in citrus oils, especially in lime oil and the foodstuffs produced from it. According to the SKLM, the highest levels were likely to be found in products containing lime or bergamot oil. Distilled and cold pressed oils differ in their levels of furanocoumarins; in distilled oils, no furanocoumarins were found. The original estimate of the average daily intake of furanocoumarins in Germany made by the SKLM is based on the assumption that flavoured foods contain cold-pressed citrus oils exclusively (worst case scenario). Recent data, however, indicate that distilled citrus oils are mainly used in flavoured soft drinks. The SKLM has therefore decided to update the assessment of the average intake of furanocoumarins from flavoured food. The following opinion was released in German on 25 January 2010, the English version was agreed on 27/28 September 2010.


Assuntos
Inocuidade dos Alimentos , Furocumarinas/toxicidade , Medição de Risco , Bebidas/análise , Furocumarinas/análise , Alemanha , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA