Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Res ; 175: 316-322, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31146103

RESUMO

Phthalates are mainly used as binders and plasticizers in various industrial products including detergents, surfactants, waxes, paints, pharmaceuticals, food products, and cosmetics. However, they have been reported to be endocrine disruptors, which are chemicals that can mimic or disturb endocrines, causing interference to the endocrine system. Recently, there have been numerous reports showing that phthalates have negative health impacts such as asthma, breast cancer, obesity, type II diabetes, and male infertility. Due to these effects, there is an urgent need for phthalate alternatives. In this study, the potential cytotoxicity of phthalates and their substitutes were screened in HaCaT cells, a human keratinocyte cell line, using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) thiazolyl blue assay, immunocytochemistry, flow cytometric analysis, and western blotting. We confirmed that common phthalates such as butyl benzyl phthalate (BBP), di-n-butyl phthalate (DBP), and di-2-ethylhexyl phthalate (DEHP) have genotoxic effects, leading to cell death. Among the known phthalate substitutes, tributyl O-acetylcitrate (ATBC), triethyl 2-acetylcitrate (ATEC), and trihexyl O-acetylcitrate (ATHC) were tested for cytotoxicity. As a result, ATEC showed similar levels of cytotoxicity with the phthalates whereas ATBC and ATHC did not show significant cytotoxicity even in high doses (5 mg/ml).


Assuntos
Poluentes Ambientais/toxicidade , Ácidos Ftálicos/toxicidade , Testes de Toxicidade/métodos , Diabetes Mellitus Tipo 2 , Dibutilftalato , Humanos , Queratinócitos , Plastificantes
2.
Environ Res ; 174: 14-23, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31022611

RESUMO

Nonylphenols (NPs) are a group of endocrine-disrupting surfactants that mimic estrogen. To determine the developmental toxicity and thyroid-disrupting effect of NPs, the effects of exposure to nonylphenol (NP), 4-nonylphenol (4-NP), and nonylphenol ethoxylate (NP-12) were examined according to the frog embryo teratogenesis assay-Xenopus (FETAX) and Organization for Economic Co-operation and Development test guidelines 231 (TG231). In FETAX, the LC50 values of NP, 4-NP, and NP-12 were 59.14 mg/L, 10.13 mg/L, and 14.60 mg/L, respectively. At 10.0 mg/L, NP, 4-NP, and NP-12 significantly decreased the total length of tadpoles, and NP and 4-NP increased gut malformation and bent tails. In surviving tadpoles, the EC50 values for malformation of NP, 4-NP, and NP-12 were 4.66, 6.51, and 13.08 mg/L, respectively. The teratogenic indices of NP, 4-NP, and NP-12 were 12.69, 1.56, and 1.08, respectively, suggesting the teratogenic potential of NP and 4-NP. In a range-finder assay for TG231, the 96-h LC50 values of NP, 4-NP, and NP-12 were 2.0, 2.0, and 10.57 mg/L, respectively. When NF stage 51 larvae were exposed for 21 days, larval growth was inhibited by NP, 4-NP, and NP-12 at 0.67, 0.07, and 0.37 mg/L, respectively. 4-NP at 0.07 mg/L accelerated the developmental stage and significantly increased hind limb length, while 0.67 mg/L 4-NP delayed the developmental stage and decreased hind limb length, suggesting a bimodal effect of 4-NP on metamorphosis. NP and NP-12 at test concentrations did not alter the larval stage, but NP-12 at 0.37 mg/L significantly decreased total length and tail length, suggesting growth inhibition in larvae. The total colloid area of thyroid follicles was significantly increased by 0.07 mg/L 4-NP but not by NP and NP-12, suggesting that 4-NP may interfere with thyroid function. Together, the developmental toxicity of NPs was in the following order: 4-NP, NP-12, and NP. 4-NP may alter metamorphosis driven by thyroid hormones in X. laevis.


Assuntos
Desenvolvimento Embrionário/efeitos dos fármacos , Metamorfose Biológica/efeitos dos fármacos , Fenóis/toxicidade , Teratogênese , Testes de Toxicidade , Animais , Embrião não Mamífero , Larva , Organização para a Cooperação e Desenvolvimento Econômico , Xenopus laevis/embriologia , Xenopus laevis/fisiologia
3.
Environ Res ; 172: 675-683, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30878739

RESUMO

Citrate esters are considered functional alternatives to phthalate plasticizers, but their toxicity remains poorly understood. The toxicity of citrate esters, including triethyl 2-acetylcitrate (ATEC) and trihexyl O-acetylcitrate (ATHC), were examined together with that of bis (2-ethylhexyl) phthalate (DEHP) using the Organization for Economic Co-operation and Development Test Guideline 407 (OECD TG407). Following 28-day oral administration, no significant differences in body weight or the weight of the brain, pituitary, heart, epididymis, seminal vesicles, or coagulating gland were found between the vehicle control and DEHP, ATEC or ATHC groups. In the 400 mg/kg day DEHP group, liver, adrenal, thymus, spleen, kidney, testis, and prostate weights were significantly increased. In the 400 mg/kg day ATHC group, kidney, adrenal, thymus, testis and prostate weights were significantly increased. In the 400 mg/kg day ATEC group, kidney, adrenal and testis weights were significantly increased. Hepatocyte size was significantly increased in the 400 mg/kg day DEHP group, suggestive of hepatotoxicity, but was not increased in the ATEC or ATHC groups. There were no significant differences in white blood cell, red blood cell or platelet counts, hemoglobin concentrations, hematocrit, mean corpuscular volume, fasting glucose, insulin, or testosterone concentrations between the vehicle control and DEHP, ATEC and ATHC groups. In the ATHC 400 mg/kg day group, T3 was decreased while T4 was increased, suggestive of disruption of thyroid function. The results of the OECD TG407 subacute repeated dosing toxicity test indicate ATEC is less toxic compared to ATHC or DEHP and could be recommended as an alternative to phthalate plasticizers.


Assuntos
Dietilexilftalato , Plastificantes , Animais , Contagem de Células Sanguíneas , Peso Corporal/efeitos dos fármacos , Citratos , Dietilexilftalato/toxicidade , Ésteres/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos ICR , Tamanho do Órgão/efeitos dos fármacos , Organização para a Cooperação e Desenvolvimento Econômico , Plastificantes/toxicidade , Glândula Tireoide/efeitos dos fármacos , Testes de Toxicidade
4.
Environ Res ; 172: 10-17, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30769184

RESUMO

Plastic products are closely intertwined with modern life. Some plasticizers used in making plastics, such as phthalates, are reported to be endocrine-disrupting chemicals. Plasticizers can be released into the environment, and health risks related to plasticizer exposure have been reported. In addition, due to plastic waste that flows into the ocean, microplastics have been found in marine products, including non-biological seawater products such as sea salt. Plastics can affect the body via a variety of pathways, and therefore safer alternative chemicals are needed. Three chemicals were evaluated: acetyl tributyl citrate (ATBC), triethyl 2-acetylcitrate (ATEC), and trihexyl O-acetylacitrate (ATHC), replacing bis(2-ethylhexyl)phthalate (DEHP), a typical plasticizer. The endocrine-disrupting activities of each chemical, including estrogenic or anti-estrogenic activity (test guideline (TG) No. 455), androgenic or anti-androgenic activity (TG No. 458), steroidogenesis (TG No. 456), and estrogenic properties via a short-term screening test using the uterotrophic assay (TG No. 440), were assessed in accordance with the Organisation for Economic Co-operation and Development guidelines for chemical testing. Our results showed that DEHP, ATBC, ATEC, ATHC possess no estrogenic activity, whereas DEHP, ATBC and ATHC demonstrate anti-estrogenic activity and ATBC anti-androgenic activity. DEHP and ATHC exhibited a disruption in steroidogenesis activities. Additional tests are necessary, but our results suggest that ATEC is a good candidate plasticizer providing a suitable alternative to DEHP.


Assuntos
Citratos/toxicidade , Disruptores Endócrinos , Plastificantes , Animais , Linhagem Celular Tumoral , Dietilexilftalato/toxicidade , Disruptores Endócrinos/toxicidade , Antagonistas de Estrogênios/toxicidade , Feminino , Hormônios Esteroides Gonadais/genética , Hormônios Esteroides Gonadais/metabolismo , Células HeLa , Humanos , Concentração Inibidora 50 , Camundongos , Plastificantes/química , Plastificantes/toxicidade , Transcrição Gênica/efeitos dos fármacos , Útero/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA