Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Neurosurg Spine ; : 1-11, 2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-32059193

RESUMO

OBJECTIVE: Many centers are hesitant to perform clinically indicated MRI in patients who have undergone deep brain stimulation (DBS). Highly restrictive guidelines prohibit the use of most routine clinical MRI protocols in these patients. The authors' goals were to assess the safety of spine MRI in patients with implanted DBS devices, first through phantom model testing and subsequently through validation in a DBS patient cohort. METHODS: A phantom was used to assess DBS device heating during 1.5-T spine MRI. To establish a safe spine protocol, routinely used clinical sequences deemed unsafe (a rise in temperature > 2°C) were modified to decrease the rise in temperature. This safe phantom-based protocol was then used to prospectively run 67 spine MRI sequences in 9 DBS participants requiring clinical imaging. The primary outcome was acute adverse effects; secondary outcomes included long-term adverse clinical effects, acute findings on brain MRI, and device impedance stability. RESULTS: The increases in temperature were highest when scanning the cervical spine and lowest when scanning the lumbar spine. A temperature rise < 2°C was achieved when 3D sequences were modified to 2D and when the number of slices was decreased by the minimum amount compared to routine spine MRI protocols (but there were still more slices than allowed by vendor guidelines). Following spine MRI, no acute or long-term adverse effects or acute findings on brain MR images were detected. Device impedances remained stable. CONCLUSIONS: Patients with DBS devices may safely undergo spine MRI with a fewer number of slices compared to those used in routine clinical protocols. Safety data acquisition may allow protocols outside vendor guidelines with a maximized number of slices, reducing the need for radiologist supervision.Clinical trial registration no.: NCT03753945 (ClinicalTrials.gov).

2.
J Neurosurg ; 132(2): 586-594, 2019 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-30797197

RESUMO

OBJECTIVE: Physicians are more frequently encountering patients who are treated with deep brain stimulation (DBS), yet many MRI centers do not routinely perform MRI in this population. This warrants a safety assessment to improve DBS patients' accessibility to MRI, thereby improving their care while simultaneously providing a new tool for neuromodulation research. METHODS: A phantom simulating a patient with a DBS neuromodulation device (DBS lead model 3387 and IPG Activa PC model 37601) was constructed and used. Temperature changes at the most ventral DBS electrode contacts, implantable pulse generator (IPG) voltages, specific absorption rate (SAR), and B1+rms were recorded during 3-T MRI scanning. Safety data were acquired with a transmit body multi-array receive and quadrature transmit-receive head coil during various pulse sequences, using numerous DBS configurations from "the worst" to "the most common."In addition, 3-T MRI scanning (T1 and fMRI) was performed on 41 patients with fully internalized and active DBS using a quadrature transmit-receive head coil. MR images, neurological examination findings, and stability of the IPG impedances were assessed. RESULTS: In the phantom study, temperature rises at the DBS electrodes were less than 2°C for both coils during 3D SPGR, EPI, DTI, and SWI. Sequences with intense radiofrequency pulses such as T2-weighted sequences may cause higher heating (due to their higher SAR). The IPG did not power off and kept a constant firing rate, and its average voltage output was unchanged. The 41 DBS patients underwent 3-T MRI with no adverse event. CONCLUSIONS: Under the experimental conditions used in this study, 3-T MRI scanning of DBS patients with selected pulse sequences appears to be safe. Generally, T2-weighted sequences (using routine protocols) should be avoided in DBS patients. Complementary 3-T MRI phantom safety data suggest that imaging conditions that are less restrictive than those used in the patients in this study, such as using transmit body multi-array receive coils, may also be safe. Given the interplay between the implanted DBS neuromodulation device and the MRI system, these findings are specific to the experimental conditions in this study.


Assuntos
Estimulação Encefálica Profunda/efeitos adversos , Imageamento por Ressonância Magnética/efeitos adversos , Neuroimagem/métodos , Idoso , Contraindicações de Procedimentos , Estimulação Encefálica Profunda/instrumentação , Impedância Elétrica , Eletrodos Implantados , Feminino , Temperatura Alta , Humanos , Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Imagens de Fantasmas
3.
J Magn Reson Imaging ; 50(1): 239-249, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30605266

RESUMO

BACKGROUND: Breast magnetic resonance spectroscopy (1 H-MRS) has been largely based on choline metabolites; however, other relevant metabolites can be detected and monitored. PURPOSE: To investigate whether lipid metabolite concentrations detected with 1 H-MRS can be used for the noninvasive differentiation of benign and malignant breast tumors, differentiation among molecular breast cancer subtypes, and prediction of long-term survival outcomes. STUDY TYPE: Retrospective. SUBJECTS: In all, 168 women, aged ≥18 years. FIELD STRENGTH/SEQUENCE: Dynamic contrast-enhanced MRI at 1.5 T: sagittal 3D spoiled gradient recalled sequence with fat saturation, flip angle = 10°, repetition time / echo time (TR/TE) = 7.4/4.2 msec, slice thickness = 3.0 mm, field of view (FOV) = 20 cm, and matrix size = 256 × 192. 1 H-MRS: PRESS with TR/TE = 2000/135 msec, water suppression, and 128 scan averages, in addition to 16 reference scans without water suppression. ASSESSMENT: MRS quantitative analysis of lipid resonances using the LCModel was performed. Histopathology was the reference standard. STATISTICAL TESTS: Categorical data were described using absolute numbers and percentages. For metric data, means (plus 95% confidence interval [CI]) and standard deviations as well as median, minimum, and maximum were calculated. Due to skewed data, the latter were more adequate; unpaired Mann-Whitney U-tests were performed to compare groups without and with Bonferroni correction. ROC analyses were also performed. RESULTS: There were 111 malignant and 57 benign lesions. Mean voxel size was 4.4 ± 4.6 cm3 . Six lipid metabolite peaks were quantified: L09, L13 + L16, L21 + L23, L28, L41 + L43, and L52 + L53. Malignant lesions showed lower L09, L21 + L23, and L52 + L53 than benign lesions (P = 0.022, 0.027, and 0.0006). Similar results were observed for Luminal A or Luminal A/B vs. other molecular subtypes. At follow-up, patients were split into two groups based on median values for the six peaks; recurrence-free survival was significantly different between groups for L09, L21 + L23, and L28 (P = 0.0173, 0.0024, and 0.0045). DATA CONCLUSION: Quantitative in vivo 1 H-MRS assessment of lipid metabolism may provide an additional noninvasive imaging biomarker to guide therapeutic decisions in breast cancer. LEVEL OF EVIDENCE: 3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019;50:239-249.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/metabolismo , Metabolismo dos Lipídeos , Espectroscopia de Prótons por Ressonância Magnética , Adulto , Idoso , Meios de Contraste , Diagnóstico Diferencial , Feminino , Humanos , Pessoa de Meia-Idade , Prognóstico , Estudos Retrospectivos
4.
Magn Reson Med ; 78(1): 247-253, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-27403765

RESUMO

PURPOSE: To compare the effectiveness of prospective, retrospective, and combined (prospective + retrospective) EPI distortion correction methods in bilateral breast diffusion-weighted imaging (DWI) scans. METHODS: Five healthy female subjects underwent an axial bilateral breast DWI exam with and without prospective B0 inhomogeneity correction using slice-by-slice linear shimming. In each case, an additional b=0 DWI scan was performed with the polarity of the phase-encoding gradient reversed, to generate an estimated B0 map; this map or a separately acquired B0 map was used for retrospective correction, either alone or in combination with the prospective correction. The alignment between an undistorted, anatomical reference scan with similar contrast and the corrected b=0 DWI images with different correction schemes was assessed. RESULTS: The average cross-correlation coefficient between the DWI images and the anatomical reference scan was increased from 0.82 to 0.92 over the five volunteers when combined prospective and retrospective distortion correction was applied. Furthermore, such correction substantially reduced patient-to-patient variation of the image alignment and the variability of the average apparent diffusion coefficient in normal glandular tissue. CONCLUSION: Combined prospective and retrospective distortion correction can provide an efficient way to reduce susceptibility-induced image distortions and enhance the reliability of breast DWI exams. Magn Reson Med 78:247-253, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Assuntos
Algoritmos , Artefatos , Mama/anatomia & histologia , Mama/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética/métodos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Feminino , Humanos , Movimento (Física) , Estudos Prospectivos , Reprodutibilidade dos Testes , Estudos Retrospectivos , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA