Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Chem Inf Model ; 64(12): 4811-4821, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38861660

RESUMO

Hepatitis C virus (HCV) is a major cause of chronic liver disease and hepatocellular carcinoma. Antibody development efforts mainly revolve around HCV envelope glycoprotein 2 (E2), which mediates host cell entry by interacting with several cell surface receptors, including CD81. We still have limited knowledge about the structural ensembles and the dynamic behavior of both the CD81 binding sites and the glycans on E2. Here, multiple microsecond-long, all-atom molecular dynamics (MD) simulations, as well as a Markov state model (MSM), were performed to provide an atomistic perspective on the dynamic nature of E2 and its glycans. End-to-end accessibility analyses outline a complete overview of the vulnerabilities of the glycan shield of E2, which may be exploited in therapeutic efforts. Additionally, the Markov state model built from the simulation maps four metastable states for AS412 and three metastable states for the front layer in CD81 binding sites, while binding with HEPC3 would induce a conformation selection for both of them. Overall, this work presents hitherto unseen functional and structural insights into E2 and its glycan coat, providing a new theoretical foundation to control the conformational plasticity of E2 that could be harnessed for vaccine development.


Assuntos
Simulação de Dinâmica Molecular , Polissacarídeos , Conformação Proteica , Proteínas do Envelope Viral , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/metabolismo , Polissacarídeos/química , Polissacarídeos/metabolismo , Hepacivirus/química , Cadeias de Markov , Humanos , Sítios de Ligação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA