Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Alzheimers Dement ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38864416

RESUMO

INTRODUCTION: Brain-derived extracellular vesicles (BEVs) in blood allows for minimally-invasive investigations of central nervous system (CNS) -specific markers of age-related neurodegenerative diseases (NDDs). Polymer-based EV- and immunoprecipitation (IP)-based BEV-enrichment protocols from blood have gained popularity. We systematically investigated protocol consistency across studies, and determined CNS-specificity of proteins associated with these protocols. METHODS: NDD articles investigating BEVs in blood using polymer-based and/or IP-based BEV enrichment protocols were systematically identified, and protocols compared. Proteins used for BEV-enrichment and/or post-enrichment were assessed for CNS- and brain-cell-type-specificity, extracellular domains (ECD+), and presence in EV-databases. RESULTS: A total of 82.1% of studies used polymer-based (ExoQuick) EV-enrichment, and 92.3% used L1CAM for IP-based BEV-enrichment. Centrifugation times differed across studies. A total of 26.8% of 82 proteins systematically identified were CNS-specific: 50% ECD+, 77.3% were listed in EV-databases. CONCLUSIONS: We identified protocol steps requiring standardization, and recommend additional CNS-specific proteins that can be used for BEV-enrichment or as BEV-biomarkers. HIGHLIGHTS: Across NDDs, we identified protocols commonly used for EV/BEV enrichment from blood. We identified protocol steps showing variability that require harmonization. We assessed CNS-specificity of proteins used for BEV-enrichment or found in BEV cargo. CNS-specific EV proteins with ECD+ or without were identified. We recommend evaluation of blood-BEV enrichment using these additional ECD+ proteins.

2.
bioRxiv ; 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37873207

RESUMO

INTRODUCTION: Brain-derived extracellular vesicles (BEVs) in blood allows for minimally- invasive investigations of CNS-specific markers of age-related neurodegenerative diseases (NDDs). Polymer-based EV- and immunoprecipitation (IP)-based BEV-enrichment protocols from blood have gained popularity. We systematically investigated protocol consistency across studies, and determined CNS-specificity of proteins associated with these protocols. METHODS: NDD articles investigating BEVs in blood using polymer-based and/or IP-based BEV enrichment protocols were systematically identified, and protocols compared. Proteins used for BEV-enrichment and/or post-enrichment were assessed for CNS- and brain-cell-type- specificity; extracellular domains (ECD+); and presence in EV-databases. RESULTS: 82.1% of studies used polymer-based (ExoQuick) EV-enrichment, and 92.3% used L1CAM for IP-based BEV-enrichment. Centrifugation times differed across studies. 26.8% of 82 proteins systematically identified were CNS-specific: 50% ECD+, 77.3% were listed in EV- databases. DISCUSSION: We identified protocol steps requiring standardization, and recommend additional CNS-specific proteins that can be used for BEV-enrichment or as BEV-biomarkers.

3.
J Cereb Blood Flow Metab ; 42(5): 788-801, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34378436

RESUMO

In vivo biomarker abnormalities provide measures to monitor therapeutic interventions targeting amyloid-ß pathology as well as its effects on downstream processes associated with Alzheimer's disease pathophysiology. Here, we applied an in vivo longitudinal study design combined with imaging and cerebrospinal fluid biomarkers, mirroring those used in human clinical trials to assess the efficacy of a novel brain-penetrating anti-amyloid fusion protein treatment in the McGill-R-Thy1-APP transgenic rat model. The bi-functional fusion protein consisted of a blood-brain barrier crossing single domain antibody (FC5) fused to an amyloid-ß oligomer-binding peptide (ABP) via Fc fragment of mouse IgG (FC5-mFc2a-ABP). A five-week treatment with FC5-mFc2a-ABP (loading dose of 30 mg/Kg/iv followed by 15 mg/Kg/week/iv for four weeks) substantially reduced brain amyloid-ß levels as measured by positron emission tomography and increased the cerebrospinal fluid amyloid-ß42/40 ratio. In addition, the 5-week treatment rectified the cerebrospinal fluid neurofilament light chain concentrations, resting-state functional connectivity, and hippocampal atrophy measured using magnetic resonance imaging. Finally, FC5-mFc2a-ABP (referred to as KG207-M) treatment did not induce amyloid-related imaging abnormalities such as microhemorrhage. Together, this study demonstrates the translational values of the designed preclinical studies for the assessment of novel therapies based on the clinical biomarkers providing tangible metrics for designing early-stage clinical trials.


Assuntos
Doença de Alzheimer , Amiloidose , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Biomarcadores , Estudos Longitudinais , Camundongos , Tomografia por Emissão de Pósitrons , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA