Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cytotherapy ; 24(7): 691-698, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35279374

RESUMO

BACKGROUND AIMS: The final harvest or wash of a cell therapy product is an important step in manufacturing, as viable cell recovery is critical to the overall success of a cell therapy. Most harvest/wash approaches in the clinical lab involve centrifugation, which can lead to loss of cells and decreased viability of the final product. Here the authors report on a multi-center assessment of the LOVO Cell Processing System (Fresenius Kabi, Bad Homburg, Germany), a cell processing device that uses a spinning filtration membrane instead of centrifugation. METHODS: Four National Institutes of Health Production Assistance for Cellular Therapies cell processing facilities (CPFs) assessed the LOVO Cell Processing System for final harvest and/or wash of the following three different cell products: activated T cells (ATCs), tumor-infiltrating lymphocytes (TILs) and bone marrow-derived mesenchymal stromal cells (MSCs). Each site compared their current in-house, routinely used method of final cell harvest and/or wash with that of the LOVO device. RESULTS: Final harvest and/or wash of ATCs, TILs and MSCs using the LOVO system resulted in satisfactory cell viability and recovery with some substantial improvement over the in-house methods of CPFs. Processing time was variable among cell types/facilities. CONCLUSIONS: The LOVO Cell Processing System provides an alternative to centrifuge-based technologies. The system employs a spinning membrane filter, exposing cells to minimal g-forces compared with centrifugation, and is automated and closed. This small multi-center study demonstrated the ability of the LOVO device to yield satisfactory cell viability and recovery of T cells and MSCs.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Células-Tronco Mesenquimais , Centrifugação
2.
Clin Transl Sci ; 14(6): 2099-2110, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34286927

RESUMO

The Production Assistance for Cellular Therapies (PACT) Program, is funded and supported by the US Department of Health and Human Services' National Institutes of Health (NIH) National Heart Lung and Blood Institute (NHLBI) to advance development of somatic cell and genetically modified cell therapeutics in the areas of heart, lung, and blood diseases. The program began in 2003, continued under two competitive renewals, and ended June 2021. PACT has supported cell therapy product manufacturing, investigational new drug enabling preclinical studies, and translational services, and has provided regulatory assistance for candidate cell therapy products that may aid in the repair and regeneration of damaged/diseased cells, tissues, and organs. PACT currently supports the development of novel cell therapies through five cell processing facilities. These facilities offer manufacturing processes, analytical development, technology transfer, process scale-up, and preclinical development expertise necessary to produce cell therapy products that are compliant with Good Laboratory Practices, current Good Manufacturing Practices, and current Good Tissue Practices regulations. The Emmes Company, LLC, serves as the Coordinating Center and assists with the management and coordination of PACT and its application submission and review process. This paper discusses the impact and accomplishments of the PACT program on the cell therapy field and its evolution over the duration of the program. It highlights the work that has been accomplished and provides a foundation to build future programs with similar goals to advance cellular therapeutics in a coordinated and centralized programmatic manner to support unmet medical needs within NHLBI purview.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/economia , Financiamento Governamental , National Heart, Lung, and Blood Institute (U.S.) , Academias e Institutos , Regulamentação Governamental , Estados Unidos
3.
Contemp Clin Trials Commun ; 21: 100702, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33511300

RESUMO

Inclusion of women and minorities in clinical research is critical to fully assess the safety and efficacy of innovative therapies. With inadequate representation of demography, generalizability is impaired since pharmacokinetics and pharmacodynamics differ in these patient populations. This study was designed to analyze the voluntary participation rates of different demographic groups in cell-based therapy clinical trials conducted by the Interdisciplinary Stem Cell Institute (ISCI) at the University of Miami, Miller School of Medicine. ISCI conducted eight clinical trials between 2007 and 2017. The trials enrolled patients with ischemic and non-ischemic cardiomyopathy, idiopathic pulmonary fibrosis (IPF), aging-frailty, and Type-2 Diabetes. Participants received cell-based therapy (n = 218) or placebo (n = 33). Among the 251 participants, 29.5% were Hispanic and 20% were women. The proportion of individuals participating in each trial was compared to that of the respective disease populations attending University of Miami Health System clinics to calculate the participation to prevalence ratio (PPR). Distribution of women accurately reflected the population attending the University of Miami Health System in trials for dilated cardiomyopathy (DCM) and aging-frailty but was under-represented in others. Similarly, Hispanics and whites were accurately represented in three of the five disease fields, with Hispanics under-represented in frailty and diabetes, and whites over-represented in DCM and IPF. Black patients were accurately represented in the diabetes trial but were under-represented in all others. This study provides insight into challenges of achieving representative inclusion in research. Novel community engagement strategies are necessary to improve inclusion of women and under-represented minorities in clinical research of cell-based therapy.

4.
Cardiovasc Res ; 116(13): 2131-2141, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32053144

RESUMO

AIMS: Sex differences impact the occurrence, presentation, prognosis, and response to therapy in heart disease. Particularly, the phenotypic presentation of patients with non-ischaemic dilated cardiomyopathy (NIDCM) differs between men and women. However, whether the response to mesenchymal stem cell (MSC) therapy is influenced by sex remains unknown. We hypothesize that males and females with NIDCM respond similarly to MSC therapy. METHODS AND RESULTS: Male (n = 24) and female (n = 10) patients from the POSEIDON-DCM trial who received MSCs via transendocardial injections were evaluated over 12 months. Endothelial function was measured at baseline and 3 months post-transendocardial stem cell injection (TESI). At baseline, ejection fraction (EF) was lower (P = 0.004) and end-diastolic volume (EDV; P = 0.0002) and end-systolic volume (ESV; P = 0.0002) were higher in males vs. females. In contrast, baseline demographic characteristics, Minnesota Living with Heart Failure Questionnaire (MLHFQ), and 6-min walk test (6MWT) were similar between groups. EF improved in males by 6.2 units (P = 0.04) and in females by 8.6 units (P = 0.04; males vs. females, P = 0.57). EDV and ESV were unchanged over time. The MLHFQ score, New York Heart Association (NYHA) class, endothelial progenitor cell-colony forming units, and serum tumour necrosis factor alpha improved similarly in both groups. CONCLUSION: Despite major differences in phenotypic presentation of NIDCM in males and females, this study is the first of its kind to demonstrate that MSC therapy improves a variety of parameters in NIDCM irrespective of patient sex. These findings have important clinical and pathophysiologic implications regarding the impact of sex on responses to cell-based therapy for NIDCM.


Assuntos
Cardiomiopatia Dilatada/cirurgia , Transplante de Células-Tronco Mesenquimais , Adulto , Idoso , Biomarcadores/sangue , Cardiomiopatia Dilatada/sangue , Cardiomiopatia Dilatada/patologia , Cardiomiopatia Dilatada/fisiopatologia , Células Progenitoras Endoteliais/metabolismo , Células Progenitoras Endoteliais/patologia , Tolerância ao Exercício , Feminino , Florida , Estado Funcional , Disparidades nos Níveis de Saúde , Humanos , Masculino , Transplante de Células-Tronco Mesenquimais/efeitos adversos , Pessoa de Meia-Idade , Qualidade de Vida , Recuperação de Função Fisiológica , Fatores Sexuais , Volume Sistólico , Fatores de Tempo , Resultado do Tratamento , Fator de Necrose Tumoral alfa/sangue , Função Ventricular Esquerda , Remodelação Ventricular
5.
Am J Cardiol ; 102(8): 980-7, 2008 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-18929697

RESUMO

Perfusion assessed in the cardiac catheterization laboratory predicts outcomes after myocardial infarction. The aim of this study was to investigate a novel method of assessing perfusion using digital subtraction angiography to generate a time-density curve (TDC) of myocardial blush, incorporating epicardial and myocardial perfusion. Seven pigs underwent temporary occlusion of the left anterior descending coronary artery for 60 minutes. Angiography was performed in the same projections before, during, and after occlusion. Perfusion parameters were obtained from the TDC and compared with Thrombolysis In Myocardial Infarction (TIMI) frame count and myocardial perfusion grade. In addition, safety and feasibility were tested in 8 patients after primary percutaneous coronary intervention. The contrast density differential between the proximal artery and the myocardium derived from the TDC correlated well with TIMI myocardial perfusion grade (R = 0.54, p <0.001). The arterial transit time derived from the TDC correlated with TIMI frame count (R = 0.435, p = 0.011). Using a cutoff of 2.4, the density/time ratio, a ratio of density differential to transit time, had sensitivity and specificity of 100% for coronary arterial occlusion. The positive and negative predictive values were 100%. The generation of a TDC was safe and feasible in 7 patients after acute myocardial infarctions, but the correlation between TDC-derived parameters and TIMI parameters did not reach statistical significance. In conclusion, this novel method of digital subtraction angiography with rapid, automated, quantitative assessment of myocardial perfusion in the cardiac catheterization laboratory correlates well with established angiographic measures of perfusion. Further studies to assess the prognostic value of this technique are warranted.


Assuntos
Cateterismo Cardíaco/métodos , Infarto do Miocárdio/terapia , Perfusão/métodos , Angiografia Digital , Animais , Cineangiografia , Angiografia Coronária , Circulação Coronária/fisiologia , Modelos Animais de Doenças , Feminino , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/fisiopatologia , Suínos , Resultado do Tratamento
6.
Circulation ; 118(3): 238-46, 2008 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-18591436

RESUMO

BACKGROUND: Prediction of prognosis remains a major unmet need in new-onset heart failure (HF). Although several clinical tests are in use, none accurately distinguish between patients with poor versus excellent survival. We hypothesized that a transcriptomic signature, generated from a single endomyocardial biopsy, could serve as a novel prognostic biomarker in HF. METHODS AND RESULTS: Endomyocardial biopsy samples and clinical data were collected from all patients presenting with new-onset HF from 1997 to 2006. Among a total of 350 endomyocardial biopsy samples, 180 were identified as idiopathic dilated cardiomyopathy. Patients with phenotypic extremes in survival were selected: good prognosis (event-free survival for at least 5 years; n=25) and poor prognosis (events [death, requirement for left ventricular assist device, or cardiac transplant] within the first 2 years of presentation with HF symptoms; n=18). We used human U133 Plus 2.0 microarrays (Affymetrix) and analyzed the data with significance analysis of microarrays and prediction analysis of microarrays. We identified 46 overexpressed genes in patients with good versus poor prognosis, of which 45 genes were selected by prediction analysis of microarrays for prediction of prognosis in a train set (n=29) with subsequent validation in test sets (n=14 each). The biomarker performed with 74% sensitivity (95% CI 69% to 79%) and 90% specificity (95% CI 87% to 93%) after 50 random partitions. CONCLUSIONS: These findings suggest the potential of transcriptomic biomarkers to predict prognosis in patients with new-onset HF from a single endomyocardial biopsy sample. In addition, our findings offer potential novel therapeutic targets for HF and cardiomyopathy.


Assuntos
Biomarcadores/metabolismo , Perfilação da Expressão Gênica , Insuficiência Cardíaca/genética , Adulto , Idoso , Biópsia , Cardiomiopatia Dilatada/complicações , Estudos de Casos e Controles , Estudos de Coortes , Endocárdio/metabolismo , Endocárdio/patologia , Feminino , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/mortalidade , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Miocárdio/metabolismo , Miocárdio/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Valor Preditivo dos Testes , Prognóstico , Recuperação de Função Fisiológica , Reprodutibilidade dos Testes , Medição de Risco/métodos , Função Ventricular Esquerda
7.
J Cardiovasc Transl Res ; 1(3): 225-31, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20559924

RESUMO

In the last half century, epidemiologic studies and basic science investigations revealed that hypertension (Kannel et al., Ann Intern Med 55:33-50, 1961), hyperlipidemia (Dawber et al., Am J Public Health Nations Health 49:1349-1356, 1959), diabetes (Kannel et al., Am J Cardiol 34(1):29-34, 1974), smoking (Dawber et al., Am J Public Health Nations Health 49:1349-1356, 1959), and inflammation (Rossmann et al., Exp Gerontol 43(3):229-237, 2008) posed increased risk for cardiovascular disease. These associations served both as risk factors and offered insight into disease pathophysiology. Currently, it is increasingly appreciated that polygenic factors may also play a role as etiologic or risk factors (Chakravarti and Little, Nature 421(6921):412-414, 2003; Dorn and Molkentin, Circulation 109(2):150-158, 2004). Recent technologic advances in genomic screening make the search for these factors possible, and robust technologies are now available for both entire genome screening for expression or single nucleotide polymorphisms. In this paper, we review the basic principles of gene expression and molecular signature analysis in the context of potential clinical applications of transcriptomics.


Assuntos
Cardiologia/métodos , Cardiomiopatias/diagnóstico , Genômica , Insuficiência Cardíaca/diagnóstico , Biomarcadores , Cardiomiopatias/genética , Perfilação da Expressão Gênica , Guias como Assunto , Insuficiência Cardíaca/genética , Humanos , Família Multigênica , Seleção de Pacientes , Fenótipo , Prognóstico , Projetos de Pesquisa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA