Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Clim Change ; 163(3): 1569-1586, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33364667

RESUMO

In the twenty-first century, modern bioenergy could become one of the largest sources of energy, partially replacing fossil fuels and contributing to climate change mitigation. Agricultural and forestry biomass residues form an inexpensive bioenergy feedstock with low greenhouse gas (GHG) emissions, if harvested sustainably. We analysed quantities of biomass residues supplied for energy and their sensitivities in harmonised bioenergy demand scenarios across eight integrated assessment models (IAMs) and compared them with literature-estimated residue availability. IAM results vary substantially, at both global and regional scales, but suggest that residues could meet 7-50% of bioenergy demand towards 2050, and 2-30% towards 2100, in a scenario with 300 EJ/year of exogenous bioenergy demand towards 2100. When considering mean literature-estimated availability, residues could provide around 55 EJ/year by 2050. Inter-model differences primarily arise from model structure, assumptions, and the representation of agriculture and forestry. Despite these differences, drivers of residues supplied and underlying cost dynamics are largely similar across models. Higher bioenergy demand or biomass prices increase the quantity of residues supplied for energy, though their effects level off as residues become depleted. GHG emission pricing and land protection can increase the costs of using land for lignocellulosic bioenergy crop cultivation, which increases residue use at the expense of lignocellulosic bioenergy crops. In most IAMs and scenarios, supplied residues in 2050 are within literature-estimated residue availability, but outliers and sustainability concerns warrant further exploration. We conclude that residues can cost-competitively play an important role in the twenty-first century bioenergy supply, though uncertainties remain concerning (regional) forestry and agricultural production and resulting residue supply potentials.

2.
Nature ; 585(7826): 551-556, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32908312

RESUMO

Increased efforts are required to prevent further losses to terrestrial biodiversity and the ecosystem services that it  provides1,2. Ambitious targets have been proposed, such as reversing the declining trends in biodiversity3; however, just feeding the growing human population will make this a challenge4. Here we use an ensemble of land-use and biodiversity models to assess whether-and how-humanity can reverse the declines in terrestrial biodiversity caused by habitat conversion, which is a major threat to biodiversity5. We show that immediate efforts, consistent with the broader sustainability agenda but of unprecedented ambition and coordination, could enable the provision of food for the growing human population while reversing the global terrestrial biodiversity trends caused by habitat conversion. If we decide to increase the extent of land under conservation management, restore degraded land and generalize landscape-level conservation planning, biodiversity trends from habitat conversion could become positive by the mid-twenty-first century on average across models (confidence interval, 2042-2061), but this was not the case for all models. Food prices could increase and, on average across models, almost half (confidence interval, 34-50%) of the future biodiversity losses could not be avoided. However, additionally tackling the drivers of land-use change could avoid conflict with affordable food provision and reduces the environmental effects of the food-provision system. Through further sustainable intensification and trade, reduced food waste and more plant-based human diets, more than two thirds of future biodiversity losses are avoided and the biodiversity trends from habitat conversion are reversed by 2050 for almost all of the models. Although limiting further loss will remain challenging in several biodiversity-rich regions, and other threats-such as climate change-must be addressed to truly reverse the declines in biodiversity, our results show that ambitious conservation efforts and food system transformation are central to an effective post-2020 biodiversity strategy.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais/métodos , Conservação dos Recursos Naturais/tendências , Política Ambiental/tendências , Atividades Humanas/tendências , Dieta , Dieta Vegetariana/tendências , Abastecimento de Alimentos , Humanos , Desenvolvimento Sustentável/tendências
3.
Nat Commun ; 10(1): 4737, 2019 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-31628337

RESUMO

The costs of climate change mitigation policy are one of the main concerns in decarbonizing the economy. The macroeconomic and sectoral implications of policy interventions are typically estimated by economic models, which tend be higher than the additional energy system costs projected by energy system models. Here, we show the extent to which policy costs can be lower than those from conventional economic models by integrating an energy system and an economic model, applying Japan's mid-century climate mitigation target. The GDP losses estimated with the integrated model were significantly lower than those in the conventional economic model by more than 50% in 2050. The representation of industry and service sector energy consumption is the main factor causing these differences. Our findings suggest that this type of integrated approach would contribute new insights by providing improved estimates of GDP losses, which can be critical information for setting national climate policies.

4.
Sci Data ; 5: 180210, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30325348

RESUMO

Information on global future gridded emissions and land-use scenarios is critical for many climate and global environmental modelling studies. Here, we generated such data using an integrated assessment model (IAM) and have made the data publicly available. Although the Coupled Model Inter-comparison Project Phase 6 (CMIP6) offers similar data, our dataset has two advantages. First, the data cover a full range and combinations of socioeconomic and climate mitigation levels, which are considered as a range of plausible futures in the climate research community. Second, we provide this dataset based on a single integrated assessment modelling framework that enables a focus on purely socioeconomic factors or climate mitigation levels, which is unavailable in CMIP6 data, since it incorporates the outcomes of each IAM scenario. We compared our data with existing gridded data to identify the characteristics of the dataset and found both agreements and disagreements. This dataset can contribute to global environmental modelling efforts, in particular for researchers who want to investigate socioeconomic and climate factors independently.

5.
Sci Rep ; 7(1): 7800, 2017 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-28798370

RESUMO

Although biophysical yield responses to local warming have been studied, we know little about how crop yield growth-a function of climate and technology-responds to global temperature and socioeconomic changes. Here, we present the yield growth of major crops under warming conditions from preindustrial levels as simulated by a global gridded crop model. The results revealed that global mean yields of maize and soybean will stagnate with warming even when agronomic adjustments are considered. This trend is consistent across socioeconomic assumptions. Low-income countries located at low latitudes will benefit from intensive mitigation and from associated limited warming trends (1.8 °C), thus preventing maize, soybean and wheat yield stagnation. Rice yields in these countries can improve under more aggressive warming trends. The yield growth of maize and soybean crops in high-income countries located at mid and high latitudes will stagnate, whereas that of rice and wheat will not. Our findings underpin the importance of ambitious climate mitigation targets for sustaining yield growth worldwide.


Assuntos
Agricultura/tendências , Produtos Agrícolas/crescimento & desenvolvimento , Agricultura/história , Mudança Climática , Aquecimento Global , História do Século XX , História do Século XXI , Modelos Econômicos , Oryza/crescimento & desenvolvimento , Pobreza , Fatores Socioeconômicos , Glycine max/crescimento & desenvolvimento , Triticum/crescimento & desenvolvimento , Zea mays/crescimento & desenvolvimento
6.
PLoS One ; 12(1): e0169733, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28076446

RESUMO

In climate change research, future scenarios of greenhouse gas and air pollutant emissions generated by integrated assessment models (IAMs) are used in climate models (CMs) and earth system models to analyze future interactions and feedback between human activities and climate. However, the spatial resolutions of IAMs and CMs differ. IAMs usually disaggregate the world into 10-30 aggregated regions, whereas CMs require a grid-based spatial resolution. Therefore, downscaling emissions data from IAMs into a finer scale is necessary to input the emissions into CMs. In this study, we examined whether differences in downscaling methods significantly affect climate variables such as temperature and precipitation. We tested two downscaling methods using the same regionally aggregated sulfur emissions scenario obtained from the Asian-Pacific Integrated Model/Computable General Equilibrium (AIM/CGE) model. The downscaled emissions were fed into the Model for Interdisciplinary Research on Climate (MIROC). One of the methods assumed a strong convergence of national emissions intensity (e.g., emissions per gross domestic product), while the other was based on inertia (i.e., the base-year remained unchanged). The emissions intensities in the downscaled spatial emissions generated from the two methods markedly differed, whereas the emissions densities (emissions per area) were similar. We investigated whether the climate change projections of temperature and precipitation would significantly differ between the two methods by applying a field significance test, and found little evidence of a significant difference between the two methods. Moreover, there was no clear evidence of a difference between the climate simulations based on these two downscaling methods.


Assuntos
Mudança Climática , Conservação dos Recursos Naturais/métodos , Modelos Teóricos , Emissões de Veículos/prevenção & controle , Simulação por Computador , Conservação dos Recursos Naturais/economia , Chuva , Temperatura
7.
Sci Total Environ ; 580: 787-796, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-27988185

RESUMO

We developed a global land-use allocation model that can be linked to integrated assessment models (IAMs) with a coarser spatial resolution. Using the model, we performed a downscaling of the IAMs' regional aggregated land-use projections to obtain a spatial land-use distribution, which could subsequently be used by Earth system models for global environmental assessments of ecosystem services, food security, and climate policies. Here we describe the land-use allocation model, discuss the verification of the downscaling technique, and explain the influences of the downscaling on estimates of land-use carbon emissions. A comparison of the emissions estimated with and without downscaling suggested that the land-use downscaling would help capture the spatial distribution of carbon stock density and regional heterogeneity of carbon emissions caused by cropland and pasture land expansion.

8.
Proc Natl Acad Sci U S A ; 111(9): 3274-9, 2014 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-24344285

RESUMO

Agricultural production is sensitive to weather and thus directly affected by climate change. Plausible estimates of these climate change impacts require combined use of climate, crop, and economic models. Results from previous studies vary substantially due to differences in models, scenarios, and data. This paper is part of a collective effort to systematically integrate these three types of models. We focus on the economic component of the assessment, investigating how nine global economic models of agriculture represent endogenous responses to seven standardized climate change scenarios produced by two climate and five crop models. These responses include adjustments in yields, area, consumption, and international trade. We apply biophysical shocks derived from the Intergovernmental Panel on Climate Change's representative concentration pathway with end-of-century radiative forcing of 8.5 W/m(2). The mean biophysical yield effect with no incremental CO2 fertilization is a 17% reduction globally by 2050 relative to a scenario with unchanging climate. Endogenous economic responses reduce yield loss to 11%, increase area of major crops by 11%, and reduce consumption by 3%. Agricultural production, cropland area, trade, and prices show the greatest degree of variability in response to climate change, and consumption the lowest. The sources of these differences include model structure and specification; in particular, model assumptions about ease of land use conversion, intensification, and trade. This study identifies where models disagree on the relative responses to climate shocks and highlights research activities needed to improve the representation of agricultural adaptation responses to climate change.


Assuntos
Agricultura/economia , Mudança Climática , Produtos Agrícolas/crescimento & desenvolvimento , Modelos Econômicos , Dióxido de Carbono/análise , Comércio/estatística & dados numéricos , Simulação por Computador , Previsões , Humanos
9.
Environ Sci Technol ; 48(1): 438-45, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24304005

RESUMO

We assessed the impacts of climate change and agricultural autonomous adaptation measures (changes in crop variety and planting dates) on food consumption and risk of hunger considering uncertainties in socioeconomic and climate conditions by using a new scenario framework. We combined a global computable general equilibrium model and a crop model (M-GAEZ), and estimated the impacts through 2050 based on future assumptions of socioeconomic and climate conditions. We used three Shared Socioeconomic Pathways as future population and gross domestic products, four Representative Concentration Pathways as a greenhouse gas emissions constraint, and eight General Circulation Models to estimate climate conditions. We found that (i) the adaptation measures are expected to significantly lower the risk of hunger resulting from climate change under various socioeconomic and climate conditions. (ii) population and economic development had a greater impact than climate conditions for risk of hunger at least throughout 2050, but climate change was projected to have notable impacts, even in the strong emission mitigation scenarios. (iii) The impact on hunger risk varied across regions because levels of calorie intake, climate change impacts and land scarcity varied by region.


Assuntos
Mudança Climática , Abastecimento de Alimentos , Modelos Teóricos , Agricultura/métodos , Previsões , Humanos , Incerteza
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA