RESUMO
The Lower Passaic River (LPR) is one of the most heavily industrialized waterways in the US with both historical and continuing discharges of chemicals from point and non-point sources. Significant efforts have been initiated on behalf of public, private, and regulatory entities to restore this degraded urban river. Considerable attention has been devoted to characterizing environmental media with respect to human and ecological risk. As part of these efforts, a wealth of environmental data have been collected and analyzed for a variety of metals, pesticides, organic compounds, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), polychlorinated dibenzodioxins/furans (PCDD/Fs), and dioxin-like compounds. The objectives of the study described in this paper were two-fold: (1) to generate LPR-specific data for use in human health risk assessment by characterizing concentrations of contaminants in LPR fish tissue samples based on publicly available data using a methodical and transparent approach, and (2) using the resulting data, to calculate the contaminant concentrations in a "Representative Fish," which is a representation of proportional fish tissue concentrations calculated based upon consumption patterns of LPR anglers. The data reduction, processing, and analyses described provide a representative dataset for the conduct of a human health assessment associated with fish consumption from the LPR.
Assuntos
Monitoramento Ambiental/métodos , Peixes/metabolismo , Poluentes Químicos da Água/metabolismo , Animais , Benzofuranos/metabolismo , Bases de Dados Factuais , Exposição Ambiental/análise , Recuperação e Remediação Ambiental , Bifenilos Policlorados/metabolismo , Dibenzodioxinas Policloradas/análogos & derivados , Dibenzodioxinas Policloradas/metabolismo , Polímeros/metabolismo , Medição de Risco , Rios/química , Poluição Química da Água/estatística & dados numéricosRESUMO
The Lower Passaic River (LPR) in New Jersey has been impacted by variety of human activities over the course of the last two centuries. In this risk assessment, we assessed potential human health risks associated with consumption of fish from the LPR, the human exposure pathway of greatest concern when addressing contaminated sediments. Our risk assessment incorporates fish consumption information gathered during a year-long, intercept-style creel angler survey and representative fish tissue concentrations for 156 chemicals of potential concern (COPCs) obtained from USEPA's public database (OurPassaic website: http://www.ourpassaic.org/projectsites/premis_public/index.cfm?fuseaction=contaminants). Due to the large number of COPCs investigated, this risk assessment was divided into two phases: (1) identification of COPCs that contribute to the majority of overall excess cancer risk and hazard estimates using deterministic and probabilistic methods, and (2) probabilistic characterization of risk using distributions of chemical concentration and cooking loss for those compounds identified in Phase 1. Phase 1 relied on point estimates of COPC concentrations and demonstrated that PCDD/Fs and PCBs (dioxin-like and non-dioxin-like) are the greatest contributors to cancer risk, while non-dioxin-like PCBs are the primary contributors to non-cancer hazard estimates. Total excess cancer risks for adult and child and receptors estimated in Phase 1 were within USEPA's acceptable excess cancer risk range, with the exception of RME child (3.0 x 10(-4) and 1.3 x 10(-4) for deterministic and probabilistic approaches, respectively). Phase 2 focused on PCDD, PCDF, and PCBs and used distributions of chemical concentrations in fish. The results showed that all excess cancer risk estimates were within the acceptable risk range, although non-cancer hazard estimates for PCBs slightly exceeded a Hazard Index of 1. This HHRA of LPR fish ingestion represents the most comprehensive evaluation conducted to date, and demonstrates that measured concentrations of COPCs are not likely to pose a health risk to people who currently consume fish from the LPR.
Assuntos
Peixes , Medição de Risco/métodos , Alimentos Marinhos/intoxicação , Poluentes Químicos da Água/análise , Adulto , Animais , Criança , Dioxinas/análise , Contaminação de Alimentos , Humanos , New Jersey , Bifenilos Policlorados/análise , Dibenzodioxinas Policloradas/análogos & derivados , Dibenzodioxinas Policloradas/análise , Rios , População UrbanaRESUMO
A recent study by the U.S. Food and Drug Administration (FDA) indicated that some beverages contained benzene at levels above the federal drinking water standard of 5 parts per billion (ppb). In tests conducted by the FDA, Crystal Light Sunrise Classic Orange (CLSCO) was reported to contain benzene levels as high as 87.9 ppb. The purpose of the present study was to better characterize benzene concentrations in CLSCO and to quantify potential human health risks. Twenty-eight samples of CLSCO were obtained from retail stores in Houston, Tex., U.S.A. The mean benzene concentrations in 16 oz original and new formulation bottles were 90 and 0.18 ppb, respectively, while 64-oz bottles contained an average of 3.38 ppb. A variety of exposure scenarios were evaluated to determine potential health risks using both deterministic and probabilistic techniques. In the deterministic analyses, upper bound point estimate cancer risks ranged from 5.4E-6 to 8.7E-8, while hazard indices (HI) ranged from 0.28 to 0.00104. Probabilistic analyses were conducted to develop more realistic cancer risk estimates. In these analyses, the 50th and 95th percentile cancer risk estimates were 3.7E-6 and 8.0E-6, and the 50th and 95th percentile hazard indices were 0.19 and 0.42, respectively. In conclusion, all cancer risk estimates and noncancer hazards met the typical health risk benchmarks established by the U.S. regulatory agencies (1E-4 to 1E-6 for cancer and hazard indices less than 1.0).