Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Bases de dados
Assunto principal
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Technol Health Care ; 32(4): 2293-2306, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38759031

RESUMO

BACKGROUND: Rehabilitation assessment is a critical component of rehabilitation treatment. OBJECTIVE: This study focuses on a comprehensive analysis of patients' movement performance using the upper limb rehabilitation robot. It quantitatively assessed patients' motor control ability and constructed an intelligent grading model of functional impairments. These findings contribute to a deeper understanding of patients' motor ability and provide valuable insights for personalized rehabilitation interventions. METHODS: Patients at different Brunnstrom stages underwent rehabilitation training using the upper limb rehabilitation robot, and data on the distal movement positions of the patients' upper limbs were collected. A total of 22 assessment metrics related to movement efficiency, smoothness, and accuracy were extracted. The performance of these assessment metrics was measured using the Mann-Whitney U test and Pearson correlation analysis. Due to the issue of imbalanced sample categories, data augmentation was performed using the Synthetic Minority Over-sampling Technique (SMOTE) algorithm based on weighted sampling, and an intelligent grading model of functional impairment based on the Extreme Gradient Boosting Tree (XGBoost) algorithm was constructed. RESULTS: Sixteen assessment metrics were screened. These metrics were effectively normalized to their maximum values, enabling the derivation of quantitative assessment scores for motor control ability across the three dimensions through a weighted fusion approach. Notably, when applied to the data-enhanced dataset, the intelligent grading model exhibited remarkable improvement, achieving an accuracy rate exceeding 0.98. Moreover, significant enhancements were observed in terms of precision, recall, and f1-score. CONCLUSION: The research findings demonstrate that this study enables the quantitative assessment of patients' motor control ability and intelligent grading of functional impairments, thereby contributing to the efficiency enhancement of clinical rehabilitation assessment. Moreover, this method resolves the issues associated with the subjectivity and prolonged periods of traditional rehabilitation assessment methods.


Assuntos
Extremidade Superior , Humanos , Extremidade Superior/fisiopatologia , Extremidade Superior/fisiologia , Fenômenos Biomecânicos , Feminino , Masculino , Pessoa de Meia-Idade , Adulto , Robótica/métodos , Algoritmos , Idoso , Movimento/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA