Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Environ Sci (China) ; 142: 33-42, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38527894

RESUMO

Biotoxicity assessment results of environmental waters largely depend on the sample extraction protocols that enrich pollutants to meet the effect-trigger thresholds of bioassays. However, more chemical mixture does not necessarily translate to higher combined biotoxicity. Thus, there is a need to establish the link between chemical extracting efficiency and biotoxicity outcome to standardize extraction methods for biotoxicity assessment of environmental waters. This study compares the performance of five different extraction phases in solid phase extraction (SPE), namely HLB, HLB+Coconut, C18 cartridge, C18 disk and Strata-X, and evaluated their chemical extracting efficiencies and biotoxicity outcomes. We quantitatively assessed cytotoxicity, acute toxicity, genotoxicity, estrogenic activity, and neurotoxicity of the extracts using in vitro bioassays and characterized the chemical extracting efficiencies of the SPE methods through chemical recoveries of 23 model compounds with different polarities and total organic carbon. Using Pareto ranking, we identified HLB+Coconut as the optimal SPE method, which exhibited the highest level of water sample biotoxicity and recovered the most chemicals in water samples. We found that the biotoxicity outcomes of the extracted water samples significantly and positively correlated with the chemical extracting efficiencies of the SPE methods. Moreover, we observed synchronous changing patterns in biotoxicity outcome and chemical extracting efficiencies in response to increasing sample volumes per cartridge (SVPC) during SPE. Our findings underscore that higher chemical extracting efficiency of SPE corresponds to higher biotoxicity outcome of environmental water samples, providing a scientific basis for standardization of SPE methods for adequate assessment of biotoxicities of environmental waters.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Águas Residuárias/toxicidade , Água/química , Extração em Fase Sólida/métodos , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise
2.
Sci Total Environ ; 628-629: 366-374, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29448021

RESUMO

This study aims to assess the effects and the mechanisms of silica nanoparticles (SiNPs) on hepatotoxicity in both normal and metabolic syndrome mouse models induced by fructose. Here, we found that SiNPs exposure lead to improved insulin resistance in metabolic syndrome mice, but markedly worsened hepatic ballooning, inflammation infiltration, and fibrosis. Moreover, SiNPs exposure aggravated liver injury in metabolic syndrome mice by causing serious DNA damage. Following SiNPs exposure, liver superoxide dismutase and catalase activities in metabolic syndrome mice were stimulated, which is accompanied by significantly increased malondialdehyde and 8-hydroxy-2-deoxyguanosine levels as compared to normal mice. Scanning electron microscope (SEM) revealed that SiNPs were more readily deposited in the liver mitochondria of metabolic syndrome mice, resulting in more severe mitochondrial injury as compared to normal mice. We speculated that SiNPs-induced mitochondrial injury might be the cause of hepatic oxidative stress, which further lead to a series of liver lesions as observed in mice following SiNPs exposure. Based on these results, it is likely that SiNPs will increase the risk and severity of liver disease in individuals with metabolic syndrome. Therefore, SiNPs should be used cautiously in food additives and clinical settings.


Assuntos
Frutose/metabolismo , Síndrome Metabólica/metabolismo , Nanopartículas/toxicidade , Dióxido de Silício/toxicidade , Animais , Fígado , Síndrome Metabólica/induzido quimicamente , Camundongos , Estresse Oxidativo , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA