Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
PLoS One ; 18(6): e0286620, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37289794

RESUMO

The nuclear genomes of most animal species include NUMTs, segments of the mitogenome incorporated into their chromosomes. Although NUMT counts are known to vary greatly among species, there has been no comprehensive study of their frequency/attributes in the most diverse group of terrestrial organisms, insects. This study examines NUMTs derived from a 658 bp 5' segment of the cytochrome c oxidase I (COI) gene, the barcode region for the animal kingdom. This assessment is important because unrecognized NUMTs can elevate estimates of species richness obtained through DNA barcoding and derived approaches (eDNA, metabarcoding). This investigation detected nearly 10,000 COI NUMTs ≥ 100 bp in the genomes of 1,002 insect species (range = 0-443). Variation in nuclear genome size explained 56% of the mitogenome-wide variation in NUMT counts. Although insect orders with the largest genome sizes possessed the highest NUMT counts, there was considerable variation among their component lineages. Two thirds of COI NUMTs possessed an IPSC (indel and/or premature stop codon) allowing their recognition and exclusion from downstream analyses. The remainder can elevate species richness as they showed 10.1% mean divergence from their mitochondrial homologue. The extent of exposure to "ghost species" is strongly impacted by the target amplicon's length. NUMTs can raise apparent species richness by up to 22% when a 658 bp COI amplicon is examined versus a doubling of apparent richness when 150 bp amplicons are targeted. Given these impacts, metabarcoding and eDNA studies should target the longest possible amplicons while also avoiding use of 12S/16S rDNA as they triple NUMT exposure because IPSC screens cannot be employed.


Assuntos
DNA Mitocondrial , Genoma de Inseto , Animais , DNA Mitocondrial/genética , Mitocôndrias/genética , Insetos/genética , Medição de Risco , Núcleo Celular/genética , Filogenia , Análise de Sequência de DNA
2.
Mol Ecol Resour ; 21(7): 2190-2203, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33905615

RESUMO

The effective use of metabarcoding in biodiversity science has brought important analytical challenges due to the need to generate accurate taxonomic assignments. The assignment of sequences to genus or species level is critical for biodiversity surveys and biomonitoring, but it is particularly challenging as researchers must select the approach that best recovers information on species composition. This study evaluates the performance and accuracy of seven methods in recovering the species composition of mock communities by using COI barcode fragments. The mock communities varied in species number and specimen abundance, while upstream molecular and bioinformatic variables were held constant, and using a set of COI fragments. We evaluated the impact of parameter optimization on the quality of the predictions. Our results indicate that BLAST top hit competes well with more complex approaches if optimized for the mock community under study. For example, the two machine learning methods that were benchmarked proved more sensitive to reference database heterogeneity and completeness than methods based on sequence similarity. The accuracy of assignments was impacted by both species and specimen counts (query compositional heterogeneity) which ultimately influence the selection of appropriate software. We urge researchers to: (i) use realistic mock communities to allow optimization of parameters, regardless of the taxonomic assignment method employed; (ii) carefully choose and curate the reference databases including completeness; and (iii) use QIIME, BLAST or LCA methods, in conjunction with parameter tuning to better assign taxonomy to diverse communities, especially when information on species diversity is lacking for the area under study.


Assuntos
Código de Barras de DNA Taxonômico , Eucariotos , Biodiversidade , Biologia Computacional , Software
4.
Genome ; 62(3): 85-95, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30257096

RESUMO

Monitoring changes in terrestrial arthropod communities over space and time requires a dramatic increase in the speed and accuracy of processing samples that cannot be achieved with morphological approaches. The combination of DNA barcoding and Malaise traps allows expedited, comprehensive inventories of species abundance whose cost will rapidly decline as high-throughput sequencing technologies advance. Aside from detailing protocols from specimen sorting to data release, this paper describes their use in a survey of arthropod diversity in a national park that examined 21 194 specimens representing 2255 species. These protocols can support arthropod monitoring programs at regional, national, and continental scales.


Assuntos
Artrópodes/classificação , Artrópodes/genética , Biodiversidade , Código de Barras de DNA Taxonômico/métodos , DNA/genética , Entomologia/instrumentação , Animais , DNA/análise , Filogenia , Especificidade da Espécie
5.
Genome ; 59(11): 933-945, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27753511

RESUMO

Many of the arthropod species that are important pests of agriculture and forestry are impossible to discriminate morphologically throughout all of their life stages. Some cannot be differentiated at any life stage. Over the past decade, DNA barcoding has gained increasing adoption as a tool to both identify known species and to reveal cryptic taxa. Although there has not been a focused effort to develop a barcode library for them, reference sequences are now available for 77% of the 409 species of arthropods documented on major pest databases. Aside from developing the reference library needed to guide specimen identifications, past barcode studies have revealed that a significant fraction of arthropod pests are a complex of allied taxa. Because of their importance as pests and disease vectors impacting global agriculture and forestry, DNA barcode results on these arthropods have significant implications for quarantine detection, regulation, and management. The current review discusses these implications in light of the presence of cryptic species in plant pests exposed by DNA barcoding.


Assuntos
Artrópodes/classificação , Artrópodes/genética , Código de Barras de DNA Taxonômico , Plantas/parasitologia , Animais , Monitoramento Ambiental , Controle de Insetos , Espécies Introduzidas , Quarentena
6.
BMC Ecol ; 11: 18, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21806794

RESUMO

BACKGROUND: When a specimen belongs to a species not yet represented in DNA barcode reference libraries there is disagreement over the effectiveness of using sequence comparisons to assign the query accurately to a higher taxon. Library completeness and the assignment criteria used have been proposed as critical factors affecting the accuracy of such assignments but have not been thoroughly investigated. We explored the accuracy of assignments to genus, tribe and subfamily in the Sphingidae, using the almost complete global DNA barcode reference library (1095 species) available for this family. Costa Rican sphingids (118 species), a well-documented, diverse subset of the family, with each of the tribes and subfamilies represented were used as queries. We simulated libraries with different levels of completeness (10-100% of the available species), and recorded assignments (positive or ambiguous) and their accuracy (true or false) under six criteria. RESULTS: A liberal tree-based criterion assigned 83% of queries accurately to genus, 74% to tribe and 90% to subfamily, compared to a strict tree-based criterion, which assigned 75% of queries accurately to genus, 66% to tribe and 84% to subfamily, with a library containing 100% of available species (but excluding the species of the query). The greater number of true positives delivered by more relaxed criteria was negatively balanced by the occurrence of more false positives. This effect was most sharply observed with libraries of the lowest completeness where, for example at the genus level, 32% of assignments were false positives with the liberal criterion versus < 1% when using the strict. We observed little difference (< 8% using the liberal criterion) however, in the overall accuracy of the assignments between the lowest and highest levels of library completeness at the tribe and subfamily level. CONCLUSIONS: Our results suggest that when using a strict tree-based criterion for higher taxon assignment with DNA barcodes, the likelihood of assigning a query a genus name incorrectly is very low, if a genus name is provided it has a high likelihood of being accurate, and if no genus match is available the query can nevertheless be assigned to a subfamily with high accuracy regardless of library completeness. DNA barcoding often correctly assigned sphingid moths to higher taxa when species matches were unavailable, suggesting that barcode reference libraries can be useful for higher taxon assignments long before they achieve complete species coverage.


Assuntos
Código de Barras de DNA Taxonômico/métodos , Mariposas/classificação , Mariposas/genética , Animais , Sequência de Bases , DNA/genética , Código de Barras de DNA Taxonômico/instrumentação , Biblioteca Gênica , Dados de Sequência Molecular , Filogenia
7.
Philos Trans R Soc Lond B Biol Sci ; 360(1462): 1825-34, 2005 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-16214741

RESUMO

The role of DNA barcoding as a tool to accelerate the inventory and analysis of diversity for hyperdiverse arthropods is tested using ants in Madagascar. We demonstrate how DNA barcoding helps address the failure of current inventory methods to rapidly respond to pressing biodiversity needs, specifically in the assessment of richness and turnover across landscapes with hyperdiverse taxa. In a comparison of inventories at four localities in northern Madagascar, patterns of richness were not significantly different when richness was determined using morphological taxonomy (morphospecies) or sequence divergence thresholds (Molecular Operational Taxonomic Unit(s); MOTU). However, sequence-based methods tended to yield greater richness and significantly lower indices of similarity than morphological taxonomy. MOTU determined using our molecular technique were a remarkably local phenomenon-indicative of highly restricted dispersal and/or long-term isolation. In cases where molecular and morphological methods differed in their assignment of individuals to categories, the morphological estimate was always more conservative than the molecular estimate. In those cases where morphospecies descriptions collapsed distinct molecular groups, sequence divergences of 16% (on average) were contained within the same morphospecies. Such high divergences highlight taxa for further detailed genetic, morphological, life history, and behavioral studies.


Assuntos
Formigas/genética , Biodiversidade , DNA/genética , Processamento Eletrônico de Dados/métodos , Técnicas de Diagnóstico Molecular/métodos , Animais , Sequência de Bases , Primers do DNA , Evolução Molecular , Geografia , Madagáscar , Modelos Genéticos , Dados de Sequência Molecular , Análise de Sequência de DNA , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA