Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 149: 19-25, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29145162

RESUMO

Elevated emissions of volatile organic compounds, including benzene, toluene, ethylbenzene, and o, p, and m-xylenes (BTEX), are an occupational health concern at oil transfer stations. This exploratory study investigated personal exposure to BTEX through environmental air and urine samples collected from 50 male workers at a major oil distribution company in Iran. Airborne BTEX exposures were evaluated over 8h periods during work-shift by using personal passive samplers. Urinary BTEX levels were determined using solid-phase microextraction with gas chromatography mass spectrometry for separation and detection. Mean exposure to ambient concentrations of benzene differed by workers' job type: tanker loading workers (5390µg/m3), tank-gauging workers (830µg/m3), drivers (81.9µg/m3), firefighters (71.2µg/m3) and office workers (19.8µg/m3). Exposure across job type was similarly stratified across all personal exposures to BTEX measured in air samples with maximum concentrations found for tanker loading workers. Average exposures concentrations of BTEX measured in urine were 11.83 ppb benzene, 1.87 ppb toluene, 0.43 ppb ethylebenzene, and 3.76 ppb xylene. Personal air exposure to benzene was found to be positively associated with benzene concentrations measured in urine; however, a relationship was not observed to the other BTEX compounds. Urinary exposure profiles are a potentially useful, noninvasive, and rapid method for assessing exposure to benzene in a developing and relatively remote production region.


Assuntos
Poluentes Ocupacionais do Ar/urina , Monitoramento Ambiental/métodos , Exposição Ocupacional/análise , Petróleo/análise , Compostos Orgânicos Voláteis/urina , Benzeno/análise , Derivados de Benzeno/urina , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Irã (Geográfico) , Masculino , Tolueno/urina , Xilenos/urina
2.
Ecotoxicol Environ Saf ; 144: 445-449, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28666218

RESUMO

The aim of this study was to evaluate benzene, toluene, ethylbenzene, and xylene (BTEX) exposure among workers at four stations of a major oil distribution company. Personal BTEX exposure samples were collected over working shift (8h) for 50 workers at four stations of a major oil distribution company in Iran. Measured mean values for workers across four sites were benzene (2437, 992, 584, and 2788µg/m3 respectively), toluene (4415, 2830, 1289, and 9407µg/m3), ethylbenzene (781, 522, 187, and 533µg/m3), and xylene (1134, 678, 322, and 525µg/m3). The maximum mean concentration measured across sites for benzene was 2788µg/m3 (Station 4), toluene was 9407µg/m3 (Station 4), ethylbenzene was 781µg/m3 (Station 1) and xylene was 1134µg/m3 (Station 1). The 8h averaged personal exposure benzene concentration exceeded the recommended value of 1600µg/m3 established by the Iranian Committee for Review and Collection of Occupational Exposure Limit and American Conference of Governmental Industrial Hygienists. Mean values for excess lifetime cancer risk for exposure to benzene were then calculated across workers at each site. Estimates of excess risk ranged from 1.74 ± 4.05 (Station 4) to 8.31 ± 25.81 (Station 3). Risk was assessed by calculation of hazard quotients and hazard indexes, which indicated that xylene and particularly benzene were the strongest contributors. Tanker loading was the highest risk occupation at these facilties. Risk management approaches to reducing exposures to BTEX compounds, especially benzene, will be important to the health of workers in Iran.


Assuntos
Poluentes Ocupacionais do Ar/análise , Monitoramento Ambiental/métodos , Exposição Ocupacional/análise , Petróleo/análise , Poluentes Ocupacionais do Ar/química , Humanos , Irã (Geográfico) , Neoplasias/induzido quimicamente , Exposição Ocupacional/efeitos adversos , Medição de Risco , Local de Trabalho/normas
3.
Environ Monit Assess ; 189(5): 235, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28451957

RESUMO

The relationship between indoor and outdoor particulate air pollution was investigated at an urban background site on the Payambar Azam Campus of Mazandaran University of Medical Sciences in Sari, Northern Iran. The concentration of particulate matter sized with a diameter less than 1 µm (PM1.0), 2.5 µm (PM2.5), and 10 µm (PM10) was evaluated at 5 outdoor and 12 indoor locations. Indoor sites included classrooms, corridors, and office sites in four university buildings. Outdoor PM concentrations were characterized at five locations around the university campus. Indoor and outdoor PM measurements (1-min resolution) were conducted in parallel during weekday mornings and afternoons. No difference found between indoor PM10 (50.1 ± 32.1 µg/m3) and outdoor PM10 concentrations (46.5 ± 26.0 µg/m3), indoor PM2.5 (22.6 ± 17.4 µg/m3) and outdoor PM2.5 concentration (22.2 ± 15.4 µg/m3), or indoor PM1.0 (14.5 ± 13.4 µg/m3) and outdoor mean PM1.0 concentrations (14.2 ± 12.3 µg/m3). Despite these similar concentrations, no correlations were found between outdoor and indoor PM levels. The present findings are not only of importance for the potential health effects of particulate air pollution on people who spend their daytime over a period of several hours in closed and confined spaces located at a university campus but also can inform regulatory about the improvement of indoor air quality, especially in developing countries.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Monitoramento Ambiental , Material Particulado/análise , Países em Desenvolvimento , Humanos , Irã (Geográfico) , Tamanho da Partícula , Ciência , Universidades
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA