Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Arch Toxicol ; 97(5): 1267-1283, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36952002

RESUMO

The assessment of persistence (P), bioaccumulation (B), and toxicity (T) of a chemical is a crucial first step at ensuring chemical safety and is a cornerstone of the European Union's chemicals regulation REACH (Registration, Evaluation, Authorization, and Restriction of Chemicals). Existing methods for PBT assessment are overly complex and cumbersome, have produced incorrect conclusions, and rely heavily on animal-intensive testing. We explore how new-approach methodologies (NAMs) can overcome the limitations of current PBT assessment. We propose two innovative hazard indicators, termed cumulative toxicity equivalents (CTE) and persistent toxicity equivalents (PTE). Together they are intended to replace existing PBT indicators and can also accommodate the emerging concept of PMT (where M stands for mobility). The proposed "toxicity equivalents" can be measured with high throughput in vitro bioassays. CTE refers to the toxic effects measured directly in any given sample, including single chemicals, substitution products, or mixtures. PTE is the equivalent measure of cumulative toxicity equivalents measured after simulated environmental degradation of the sample. With an appropriate panel of animal-free or alternative in vitro bioassays, CTE and PTE comprise key environmental and human health hazard indicators. CTE and PTE do not require analytical identification of transformation products and mixture components but instead prompt two key questions: is the chemical or mixture toxic, and is this toxicity persistent or can it be attenuated by environmental degradation? Taken together, the proposed hazard indicators CTE and PTE have the potential to integrate P, B/M and T assessment into one high-throughput experimental workflow that sidesteps the need for analytical measurements and will support the Chemicals Strategy for Sustainability of the European Union.


Assuntos
Monitoramento Ambiental , Humanos , Monitoramento Ambiental/métodos , Bioacumulação , União Europeia , Medição de Risco/métodos
2.
Integr Environ Assess Manag ; 5(1): 50-61, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19132821

RESUMO

Here, recommendations to improve ecological and chemical status assessments in accordance with the European Water Framework Directive (WFD) are made on the basis of experience gained from the MODELKEY project database, linking existing biological and chemical monitoring data of 3 case study river basins (Elbe, Scheldt, and Llobregat). The data analysis within and across river basins revealed major obstacles to be tackled, including scarcity of matching ecological and chemical monitoring sites for cause-effect relationships as well as a general lack of stressor-specific metrics for single biological quality elements (BQE) to enable a comprehensive risk assessment of all predominant stressors, including toxicity. An example of such a metric, which is recommended for the BQE of benthic macroinvertebrates, is the trait-based species-at-risk index (SPEAR) that correlated well with a respective measure for toxic stress, referred to as toxic units, based on simple mixture toxicity concepts. Surprisingly, the assessment of chemical status of a total of 695 monitoring sites for 2000 to 2004 showed that environmental quality standards (EQSs) were exceeded for at least 1 of the currently 41 priority pollutants (PPs) in 92% to 98% of the cases in all 3 of the river basins, which, according to definition, indicates potential effects on ecological status. A comparison of compliance with EQSs for 41 PPs with a respective effect threshold (derived for benthic macroinvertebrates) revealed that the rather conservative concept of chemical status is most likely not protective in all cases. Furthermore, to account for the many other compounds that are detected frequently in European surface waters and that may also have ecotoxicological effects, we introduced a provisional predicted no-effect concentration that is in accordance with the EQS methodology and is suggested to identify potential emerging compounds for which no or insufficient toxicity data exist. In conclusion, this study aims to support the implementation of the WFD by drawing conclusions from the analysis of heterogeneous data sets of various member states and by introducing new tools to move toward an integrated European assessment of ecological and chemical status.


Assuntos
Ecossistema , Monitoramento Ambiental/métodos , Rios/química , Poluentes Químicos da Água/química , Bases de Dados Factuais , Europa (Continente) , União Europeia , Regulamentação Governamental , Modelos Teóricos , Medição de Risco , Movimentos da Água , Poluentes Químicos da Água/toxicidade , Poluição Química da Água/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA