Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Toxicol Chem ; 41(7): 1778-1787, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35435995

RESUMO

In pesticide risk assessment, regulatory acceptable concentrations for surface water bodies (RACsw,ch) are used that are derived from standard studies with continuous exposure of organisms to a test compound for days or months. These RACsw,ch are compared with the maximum tested concentration of more realistic exposure scenarios. However, the actual exposure duration could be notably shorter (e.g., hours) than the standard study, which intentionally leads to an overly conservative Tier 1 risk assessment. This discrepancy can be addressed in a risk assessment using the time-weighted average concentration (TWAc). In Europe, the applicability of TWAc for a particular risk assessment is evaluated using a complex decision scheme, which has been controversial; thus we propose an alternative approach: We used TWAc-check (which is based on the idea that the TWAc concept is just a model for aquatic risk assessment) to test whether the use of a TWAc is appropriate for such assessment. The TWAc-check method works by using predicted-measured diagrams to test how well the TWAc model predicts experimental data from peak exposure experiments. Overestimated effects are accepted because the conservatism of the TWAc model is prioritized over the goodness of fit. We illustrate the applicability of TWAc-check by applying it to various data sets for different species and substances. We demonstrate that the applicability is case dependent. Specifically, TWAc-check correctly identifies that the use of TWAc is not appropriate for early onset of effects or delayed effects. The proposed concept shows that the time window is a decisive factor as to whether or not the model is acceptable and that this concept can be used as a potential refinement option prior to the use of toxicokinetic-toxicodynamic models. Environ Toxicol Chem 2022;41:1778-1787. © 2022 Bayer AG. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Praguicidas , Poluentes Químicos da Água , Ecotoxicologia , Europa (Continente) , Medição de Risco/métodos , Poluentes Químicos da Água/toxicidade
2.
Integr Environ Assess Manag ; 18(5): 1375-1386, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34755447

RESUMO

Myriophyllum spicatum is a sediment-rooted, aquatic macrophyte growing submerged, with a wide geographical distribution and high ecological relevance in freshwater ecosystems. It is used in testing and risk assessment for pesticides in water and sediment. Population models enable effects measured under laboratory conditions to be extrapolated to effects expected in the field with time-variable environmental factors including exposure. These models are a promising tool in higher-tier risk assessments. However, there is a lack of data on the seasonal dynamics of M. spicatum, which is needed to test model predictions of typical population dynamics in the field. To generate such data, a two-year study was set up in outdoor experimental systems from May 2017 to May 2019. The growth of M. spicatum was monitored in 0.2025 m2 plant baskets installed in an experimental ditch. Parameters monitored included biomass (fresh weight [FW] and dry weight [DW]), shoot length, seasonal short-term growth rates of shoots, relevant environmental parameters, and weather data. The results showed a clear seasonal pattern of biomass and shoot length and their variability. M. spicatum reached a maximum total shoot length (TSL) of 279 m m-2 and a maximum standing crop above-ground DW of 262 g m-2 . Periodical growth rates reached up to 0.072, 0.095, and 0.085 day-1 for total length, FW, and DW, respectively. Multivariate regression revealed that pH (as a surrogate for the availability of carbon species) and water temperature could explain a significant proportion of the variability in M. spicatum growth rates (p < 0.05). This study has provided an ecologically relevant data set on seasonal population dynamics representative of shallow freshwater ecosystems, which can be used to test and refine population models for use in chemical risk assessment and ecosystem management. Integr Environ Assess Manag 2022;18:1375-1386. © 2021 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Assuntos
Magnoliopsida , Poluentes Químicos da Água , Ecossistema , Medição de Risco , Estações do Ano , Água , Poluentes Químicos da Água/análise
3.
Integr Environ Assess Manag ; 12(1): 82-95, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26420056

RESUMO

This case study of the Society of Environmental Toxicology and Chemistry (SETAC) workshop MODELINK demonstrates the potential use of mechanistic effects models for macrophytes to extrapolate from effects of a plant protection product observed in laboratory tests to effects resulting from dynamic exposure on macrophyte populations in edge-of-field water bodies. A standard European Union (EU) risk assessment for an example herbicide based on macrophyte laboratory tests indicated risks for several exposure scenarios. Three of these scenarios are further analyzed using effect models for 2 aquatic macrophytes, the free-floating standard test species Lemna sp., and the sediment-rooted submerged additional standard test species Myriophyllum spicatum. Both models include a toxicokinetic (TK) part, describing uptake and elimination of the toxicant, a toxicodynamic (TD) part, describing the internal concentration-response function for growth inhibition, and a description of biomass growth as a function of environmental factors to allow simulating seasonal dynamics. The TK-TD models are calibrated and tested using laboratory tests, whereas the growth models were assumed to be fit for purpose based on comparisons of predictions with typical growth patterns observed in the field. For the risk assessment, biomass dynamics are predicted for the control situation and for several exposure levels. Based on specific protection goals for macrophytes, preliminary example decision criteria are suggested for evaluating the model outputs. The models refined the risk indicated by lower tier testing for 2 exposure scenarios, while confirming the risk associated for the third. Uncertainties related to the experimental and the modeling approaches and their application in the risk assessment are discussed. Based on this case study and the assumption that the models prove suitable for risk assessment once fully evaluated, we recommend that 1) ecological scenarios be developed that are also linked to the exposure scenarios, and 2) quantitative protection goals be set to facilitate the interpretation of model results for risk assessment.


Assuntos
Monitoramento Ambiental/métodos , Herbicidas/toxicidade , Magnoliopsida/efeitos dos fármacos , Modelos Biológicos , Medição de Risco/métodos , Poluentes Químicos da Água/toxicidade , Biomassa , Ecotoxicologia , Herbicidas/análise , Raízes de Plantas/efeitos dos fármacos , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA