Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Assunto principal
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Chem Theory Comput ; 18(4): 2308-2330, 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35289608

RESUMO

Hybrid or "extended" symmetry-adapted perturbation theory (XSAPT) replaces traditional SAPT's treatment of dispersion with better performing alternatives while at the same time extending two-body (dimer) SAPT to a many-body treatment of polarization using a self-consistent charge embedding procedure. The present work presents a systematic study of how XSAPT interaction energies and energy components converge with respect to the choice of Gaussian basis set. Errors can be reduced in a systematic way using correlation-consistent basis sets, with aug-cc-pVTZ results converged within <0.1 kcal/mol. Similar (if slightly less systematic) behavior is obtained using Karlsruhe basis sets at much lower cost, and we introduce new versions with limited augmentation that are even more efficient. Pople-style basis sets, which are more efficient still, often afford good results if a large number of polarization functions are included. The dispersion models used in XSAPT afford much faster basis-set convergence as compared to the perturbative description of dispersion in conventional SAPT, meaning that "compromise" basis sets (such as jun-cc-pVDZ) are no longer required and benchmark-quality results can be obtained using triple-ζ basis sets. The use of diffuse functions proves to be essential, especially for the description of hydrogen bonds. The "δ(Hartree-Fock)" correction for high-order induction can be performed in double-ζ basis sets without significant loss of accuracy, leading to a mixed-basis approach that offers 4× speedup over the existing (cubic scaling) XSAPT approach.


Assuntos
Dimerização , Ligação de Hidrogênio
2.
J Chem Phys ; 151(22): 224111, 2019 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-31837687

RESUMO

We present the theory and implementation of a Poisson-Boltzmann implicit solvation model for electrolyte solutions. This model can be combined with arbitrary electronic structure methods that provide an accurate charge density of the solute. A hierarchy of approximations for this model includes a linear approximation for weak electrostatic potentials, finite size of the mobile electrolyte ions, and a Stern-layer correction. Recasting the Poisson-Boltzmann equations into Euler-Lagrange equations then significantly simplifies the derivation of the free energy of solvation for these approximate models. The parameters of the model are either fit directly to experimental observables-e.g., the finite ion size-or optimized for agreement with experimental results. Experimental data for this optimization are available in the form of Sechenov coefficients that describe the linear dependence of the salting-out effect of solutes with respect to the electrolyte concentration. In the final part, we rationalize the qualitative disagreement of the finite ion size modification to the Poisson-Boltzmann model with experimental observations by taking into account the electrolyte concentration dependence of the Stern layer. A route toward a revised model that captures the experimental observations while including the finite ion size effects is then outlined. This implementation paves the way for the study of electrochemical and electrocatalytic processes of molecules and cluster models with accurate electronic structure methods.

3.
J Chem Phys ; 151(3): 031102, 2019 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-31325940

RESUMO

Extended symmetry-adapted perturbation theory (XSAPT) uses a self-consistent charge embedding to capture many-body polarization, in conjunction with a pairwise-additive SAPT calculation of intermolecular interaction energies. The original implementation of XSAPT is based on charges that are fit to reproduce molecular electrostatic potentials, but this becomes a computational bottleneck in large systems. Charge embedding based on modified Hirshfeld atomic charges is reported here, which dramatically reduces the computational cost without compromising accuracy. Exemplary calculations are presented for supramolecular complexes such as C60@C60H28, a DNA intercalation complex, and a 323-atom model of a drug molecule bound to an enzyme active site. The proposed charge embedding should be useful in other fragment-based quantum chemistry methods as well.

5.
J Phys Chem A ; 115(50): 14470-83, 2011 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-22032635

RESUMO

The prevailing structural paradigm for the aqueous electron is that of an s-like ground-state wave function that inhabits a quasi-spherical solvent cavity, a viewpoint that is supported by numerous atomistic simulations using various one-electron pseudopotential models. This conceptual picture has recently been challenged, however, on the basis of results obtained from a new electron-water pseudopotential model that predicts a more delocalized wave function and no well-defined solvent cavity. Here, we examine this new model in comparison to two alternative, cavity-forming pseudopotential models. We find that the cavity-forming models are far more consistent with the experimental data for the electron's radius of gyration, optical absorption spectrum, and vertical electron binding energy. Calculations of the absorption spectrum using time-dependent density functional theory are in quantitative or semiquantitative agreement with experiment when the solvent geometries are obtained from the cavity-forming pseudopotential models, but differ markedly from experiment when geometries that do not form a cavity are used.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA