Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nanoscale ; 16(14): 7110-7122, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38501279

RESUMO

This study was initiated due to the physically unexplainable tumor controls resulting from metal nanoparticle (MNP) experiments even under MV X-ray irradiation. A more accurate explanation of the mechanism of radiosensitization induced by MNP is warranted, considering both its physical dose enhancement and biological sensitization, as related research is lacking. Thus, we aimed to examine the intricate dynamics involved in MNP-induced radiosensitization. We conducted specifically designed clonogenic assays for the A549 lung cancer cell line with MNP irradiated by 6 MV and 300 kVp X-rays. Two types of MNP were employed: one based on iron oxide, promoting ferroptosis, and the other on gold nanoparticles known for inducing a significant dose enhancement, particularly at low-energy X-rays. We introduced the lethality enhancement factor (LEF) as the fraction in the cell killing attributed to biological sensitization. Subsequently, Monte Carlo simulations were conducted to evaluate the radial dose profiles for each MNP, corresponding to the physical enhancement. Finally, the local effect model was applied to the clonogenic assay results on real cell images. The LEF and the dose enhancement in the cytoplasm were incorporated to increase the accuracy in the average lethal events and, consequently, in the survival fraction. The results reveal an increased cell killing for both of the MNP under MV and kV X-ray irradiation. In both types of MNP, the LEF reveals a biological sensitization evident. The sensitizer enhancement ratio, derived from the calculations, exhibited only 3% and 1% relative differences compared to the conventional linear-quadratic model for gold and ferroptosis inducer nanoparticles, respectively. These findings indicate that MNPs sensitize cells via radiation through mechanisms akin to ferroptosis inducers, not exclusively relying on a physical dose enhancement. Their own contributions to survival fractions were successfully integrated into computational modeling.


Assuntos
Neoplasias Pulmonares , Nanopartículas Metálicas , Humanos , Raios X , Ouro/farmacologia , Simulação por Computador , Método de Monte Carlo
2.
Med Phys ; 48(2): 796-804, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33128244

RESUMO

PURPOSE: To measure the radiosensitization by an Au-nanofilm (GNF) at a micrometer level on a radiochromic film (RCF) using confocal Raman spectroscopy (CRS). METHODS: Unlaminated radiochromic films were irradiated by 200 kVp x-ray from 0.3 to 50 Gy to obtain a calibration curve. Raman spectra of these films were measured by positioning the postirradiated RCF perpendicular to the CRS monochromatic beam and reading a depth profile of the film along the lateral axis. The Raman peak corresponding to the C ≡ C peak was obtained from a region of interest of 100 × 5 µm2 . To investigate the radiosensitization by GNF, two sets of RCF, one attached to a 100-nm thick GNF and the other without GNF were irradiated at 0.5 Gy by 50 and 120 kVp X-rays. The spatial resolution of the CRS on the RCF was quantified by the modulation transfer function method (MTF). Thus, in the spatial resolution determined by MTF, the doses deposited on the films were evaluated. The dose enhancement factor (DEF) was obtained in the measurable micro-size by comparing doses deposited on the RCFs with and without GNF. To verify the experimental results, Monte Carlo simulations following the experimental set up were performed using Geant4. In addition, analytical calculations for the radiosensitization by GNF were carried out. RESULTS: The confocal Raman spectroscopy on the RCF achieved a spatial resolution of ~6 µm. An experimental DEF within the first 6 µm depth from the surface of RCF was found to be 17.9 for 50 kVp and 14.7 for 120 kVp. The DEF for the same depth obtained by MC and analytical calculations was 13.53 and 9.75 for 50 kVp, and 10.63 and 6.67 for 120 kVp, respectively. CONCLUSIONS: The experimental DEF as a function of the distance from GNF was consistent with data from previous studies and the MC simulations, supporting that CRS in conjunction with the RCF is a feasible micrometer-resolution dosimeter.


Assuntos
Dosimetria Fotográfica , Análise Espectral Raman , Calibragem , Método de Monte Carlo , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA