Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Glob Food Sec ; 39: 100722, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38093782

RESUMO

Understanding the global economic importance of farmed animals to society is essential as a baseline for decision making about future food systems. We estimated the annual global economic (market) value of live animals and primary production outputs, e.g., meat, eggs, milk, from terrestrial and aquatic farmed animal systems. The results suggest that the total global market value of farmed animals ranges between 1.61 and 3.3 trillion USD (2018) and is expected to be similar in absolute terms to the market value of crop outputs (2.57 trillion USD). The cattle sector dominates the market value of farmed animals. The study highlights the need to consider other values of farmed animals to society, e.g., finance/insurance value and cultural value, in decisions about the sector's future.

2.
Circulation ; 148(18): 1417-1439, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37767686

RESUMO

Unhealthy diets are a major impediment to achieving a healthier population in the United States. Although there is a relatively clear sense of what constitutes a healthy diet, most of the US population does not eat healthy food at rates consistent with the recommended clinical guidelines. An abundance of barriers, including food and nutrition insecurity, how food is marketed and advertised, access to and affordability of healthy foods, and behavioral challenges such as a focus on immediate versus delayed gratification, stand in the way of healthier dietary patterns for many Americans. Food Is Medicine may be defined as the provision of healthy food resources to prevent, manage, or treat specific clinical conditions in coordination with the health care sector. Although the field has promise, relatively few studies have been conducted with designs that provide strong evidence of associations between Food Is Medicine interventions and health outcomes or health costs. Much work needs to be done to create a stronger body of evidence that convincingly demonstrates the effectiveness and cost-effectiveness of different types of Food Is Medicine interventions. An estimated 90% of the $4.3 trillion annual cost of health care in the United States is spent on medical care for chronic disease. For many of these diseases, diet is a major risk factor, so even modest improvements in diet could have a significant impact. This presidential advisory offers an overview of the state of the field of Food Is Medicine and a road map for a new research initiative that strategically approaches the outstanding questions in the field while prioritizing a human-centered design approach to achieve high rates of patient engagement and sustained behavior change. This will ideally happen in the context of broader efforts to use a health equity-centered approach to enhance the ways in which our food system and related policies support improvements in health.


Assuntos
American Heart Association , Dieta , Humanos , Estados Unidos , Estado Nutricional , Fatores de Risco , Custos de Cuidados de Saúde
3.
Agric Syst ; 206: 103611, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36926444

RESUMO

CONTEXT: Rapid economic development in East Africa is matched by extremely dynamic smallholder livelihoods. Objective: To quantify the changes in poverty of smallholder farmers, to evaluate the potential of farm and off-farm activities to alleviate poverty, and to evaluate the potential barriers to poverty alleviation. METHODS: The analyses were based on a panel survey of 600 households undertaken in 2012 and re-visited approximately four years later in four sites in East Africa. The sites represented contrasting smallholder farming systems, linked to urban centres undergoing rapid economic and social change (Nairobi, Kampala, Kisumu, and Dar-es-Salaam). The surveys assessed farm management, farm productivity, livelihoods, and various measures of household welfare. RESULTS AND CONCLUSIONS: Almost two thirds of households rose above or fell below meaningful poverty thresholds - more than previously measured in this context - but overall poverty rates remained constant. Enhanced farm value production and off-farm income proved to be important mechanisms to rise out of poverty for households that were already resource-endowed. However, households in the poorest stratum in both panels appeared to be stuck in a poverty trap. They owned significantly fewer productive assets in the first panel compared to other groups (land and livestock), and these baseline assets were found to be positively correlated with farm income in the second panel survey. Equally these households were also found to be among the least educated, while education was found to be an important enabling factor for the generation of high value off-farm income. SIGNIFICANCE: Rural development that aims to stimulate increases in farm produce value as a means to alleviate poverty are only viable for already resource-endowed households, as they have the capacity to enhance farm value production. Conversely, the alleviation of extreme poverty should focus on different means, perhaps cash transfers, or the development of more sophisticated social safety nets. Furthermore, while off-farm income presents another important mechanism for poverty alleviation in rural areas, these opportunities are restricted to those households that have had access to education. As more households turn to off-farm activities to supplement or replace their livelihoods, farming approaches will also change affecting the management of natural resources. These dynamics ought to be better understood to better manage land-use transitions.

4.
Lancet Planet Health ; 6(8): e658-e669, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35932786

RESUMO

BACKGROUND: Slowing climate change is crucial to the future wellbeing of human societies and the greater environment. Current beef production systems in the USA are a major source of negative environmental impacts and raise various animal welfare concerns. Nevertheless, beef production provides a food source high in protein and many nutrients as well as providing employment and income to millions of people. Cattle farming also contributes to individual and community identities and regional food cultures. Novel plant-based meat alternatives have been promoted as technologies that could transform the food system by reducing negative environmental, animal welfare, and health effects of meat production and consumption. Recent studies have conducted static analyses of shifts in diets globally and in the USA, but have not considered how the whole food system would respond to these changes, nor the ethical implications of these responses. We aimed to better explore these dynamics within the US food system and contribute a multiple perspective ethical assessment of plant-based alternatives to beef. METHODS: In this national modelling analysis, we explored multiple ethical perspectives and the implications of the adoption of plant-based alternatives to beef in the USA. We developed USAGE-Food, a modified version of USAGE (a detailed computable general equilibrium model of the US economy), by improving the representation of sector interactions and dependencies, and consumer behaviour to better reflect resource use across the food system and the substitutability of foods within households. We further extended USAGE, by linking estimates of the environmental footprint of US agriculture, to estimate how changes across the agriculture sector could alter the environmental impact of primary food production across the whole sector, not only the beef sector. Using USAGE-Food, we simulated four beef replacement scenarios against a baseline of current beef demand in the USA: BEEF10, in which beef expenditure is replaced by other foods and three scenarios wherein 10%, 30%, or 60% of beef expenditure is replaced by plant-based alternatives. FINDINGS: The adoption of plant-based beef alternatives is likely to reduce the carbon footprint of US food production by 2·5-13·5%, by reducing the number of animals needed for beef production by 2-12 million. Impacts on other dimensions are more ambiguous, as the agricultural workforce and natural resources, such as water and cropland, are reallocated across the food system. The shifting allocation of resources should lead to a more efficient food system, but could facilitate the expansion of other animal value chains (eg, pork and poultry) and increased exports of agricultural products. In aggregate, these changes across the food system would have a small, potentially positive, impact on national gross domestic product. However, they would lead to substantial disruptions within the agricultural economy, with the cattle and beef processing sectors decreasing by 7-45%, challenging the livelihoods of the more than 1·5 million people currently employed in beef value chains (primary production and animal processing) in the USA. INTERPRETATION: Economic modelling suggests that the adoption of plant-based beef alternatives can contribute to reducing greenhouse gas emissions from the food system. Relocation of resources across the food system, simulated by our dynamic modelling approach, might mitigate gains across other environmental dimensions (ie, water or chemical use) and might facilitate the growth of other animal value chains. Although economic consequences at the country level are small, there would be concentrated losses within the beef value chain. Reduced carbon footprint and increased resource use efficiency of the food system are reasons for policy makers to encourage the continued development of these technologies. Despite this positive outcome, policy makers should recognise the ethical assessment of these transitions will be complex, and should remain vigilant to negative outcomes and be prepared to target policies to minimise the worst effects. FUNDING: The Stavros Niarchos Foundation, the Bill & Melinda Gates Foundation, Johns Hopkins University, the Commonwealth Scientific and Industrial Research Organisation, Cornell University, and Victoria University.


Assuntos
Dieta , Gases de Efeito Estufa , Animais , Pegada de Carbono , Bovinos , Humanos , Carne , Estados Unidos , Água
5.
Nat Food ; 3(9): 764-779, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-37118149

RESUMO

Over the past 50 years, food systems worldwide have shifted from predominantly rural to industrialized and consolidated systems, with impacts on diets, nutrition and health, livelihoods, and environmental sustainability. We explore the potential for sustainable and equitable food system transformation (ideal state of change) by comparing countries at different stages of food system transition (changes) using food system typologies. Historically, incomes have risen faster than food prices as countries have industrialized, enabling a simultaneous increase in the supply and affordability of many nutritious foods. These shifts are illustrated across five food system typologies, from rural and traditional to industrial and consolidated. Evolving rural economies, urbanization and changes in food value chains have accompanied these transitions, leading to changes in land distribution, a smaller share of agri-food system workers in the economy and changes in diets. We show that the affordability of a recommended diet has improved over time, but food systems of all types are falling short of delivering optimal nutrition and health outcomes, environmental sustainability, and inclusion and equity for all. Six 'outlier' case studies (Tajikistan, Egypt, Albania, Ecuador, Bolivia and the United States of America) illustrate broad trends, trade-offs and deviations. With the integrated view afforded by typologies, we consider how sustainable transitions can be achieved going forward.

7.
Lancet Planet Health ; 5(1): e50-e62, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33306994

RESUMO

Food system innovations will be instrumental to achieving multiple Sustainable Development Goals (SDGs). However, major innovation breakthroughs can trigger profound and disruptive changes, leading to simultaneous and interlinked reconfigurations of multiple parts of the global food system. The emergence of new technologies or social solutions, therefore, have very different impact profiles, with favourable consequences for some SDGs and unintended adverse side-effects for others. Stand-alone innovations seldom achieve positive outcomes over multiple sustainability dimensions. Instead, they should be embedded as part of systemic changes that facilitate the implementation of the SDGs. Emerging trade-offs need to be intentionally addressed to achieve true sustainability, particularly those involving social aspects like inequality in its many forms, social justice, and strong institutions, which remain challenging. Trade-offs with undesirable consequences are manageable through the development of well planned transition pathways, careful monitoring of key indicators, and through the implementation of transparent science targets at the local level.


Assuntos
Indústria Alimentícia , Invenções , Desenvolvimento Sustentável , Agricultura , Inteligência Artificial , Feminino , Saúde Global , Objetivos , Humanos , Masculino , Inovação Organizacional , Política Pública , Fatores Socioeconômicos
8.
Food Nutr Bull ; 41(2_suppl): 31S-58S, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33356594

RESUMO

BACKGROUND: The global food system is directly linked to international health and sustainability targets, such as the United Nation's Sustainable Development Goals, Paris Agreement climate change targets, and the Aichi Biodiversity Targets. These targets are already threatened by current dietary patterns and will be further threatened by 2050 because of a growing population and transitions toward diets with more calories, animal-source foods, and ultra-processed foods. While dietary changes to healthier and predominantly plant-based diets will be integral to meeting environmental targets, economic, social, and cultural barriers make such dietary transitions difficult. OBJECTIVE: To discuss the role of healthy diets in sustainable food systems and to highlight potential difficulties and solutions of transitioning toward healthier dietary patterns. To do so, we synthesize global knowledge and conduct a series of case studies on 4 countries that differ in their social, economic, political, and dietary contexts: Brazil, Vietnam, Kenya, and Sweden. CONCLUSIONS: No single "silver bullet" policy solution exists to shift food choices toward sustainable healthy diets. Instead, simultaneous action by the public sector, private sector, and governments will be needed.


Assuntos
Dieta Saudável/normas , Abastecimento de Alimentos/normas , Saúde Global/tendências , Política Nutricional/tendências , Desenvolvimento Sustentável/tendências , Dieta Saudável/métodos , Abastecimento de Alimentos/métodos , Saúde Global/normas , Humanos
9.
Nature ; 585(7826): 551-556, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32908312

RESUMO

Increased efforts are required to prevent further losses to terrestrial biodiversity and the ecosystem services that it  provides1,2. Ambitious targets have been proposed, such as reversing the declining trends in biodiversity3; however, just feeding the growing human population will make this a challenge4. Here we use an ensemble of land-use and biodiversity models to assess whether-and how-humanity can reverse the declines in terrestrial biodiversity caused by habitat conversion, which is a major threat to biodiversity5. We show that immediate efforts, consistent with the broader sustainability agenda but of unprecedented ambition and coordination, could enable the provision of food for the growing human population while reversing the global terrestrial biodiversity trends caused by habitat conversion. If we decide to increase the extent of land under conservation management, restore degraded land and generalize landscape-level conservation planning, biodiversity trends from habitat conversion could become positive by the mid-twenty-first century on average across models (confidence interval, 2042-2061), but this was not the case for all models. Food prices could increase and, on average across models, almost half (confidence interval, 34-50%) of the future biodiversity losses could not be avoided. However, additionally tackling the drivers of land-use change could avoid conflict with affordable food provision and reduces the environmental effects of the food-provision system. Through further sustainable intensification and trade, reduced food waste and more plant-based human diets, more than two thirds of future biodiversity losses are avoided and the biodiversity trends from habitat conversion are reversed by 2050 for almost all of the models. Although limiting further loss will remain challenging in several biodiversity-rich regions, and other threats-such as climate change-must be addressed to truly reverse the declines in biodiversity, our results show that ambitious conservation efforts and food system transformation are central to an effective post-2020 biodiversity strategy.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais/métodos , Conservação dos Recursos Naturais/tendências , Política Ambiental/tendências , Atividades Humanas/tendências , Dieta , Dieta Vegetariana/tendências , Abastecimento de Alimentos , Humanos , Desenvolvimento Sustentável/tendências
12.
Nat Food ; 1(4): 221-228, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33634268

RESUMO

African swine fever is a deadly porcine disease that has spread into East Asia where it is having a detrimental effect on pork production. However, the implications of African swine fever on the global pork market are poorly explored. Two linked global economic models are used to explore the consequences of different scales of the epidemic on pork prices and on the prices of other food types and animal feeds. The models project global pork prices increasing by 17-85% and unmet demand driving price increases of other meats. This price rise reduces the quantity of pork demanded but also spurs production in other parts of the world, and imports make up half the Chinese losses. Demand for, and prices of, food types such as beef and poultry rise, while prices for maize and soybean used in feed decline. There is a slight decline in average per capita calorie availability in China, indicating the importance of assuring the dietary needs of low-income populations. Outside China, projections for calorie availability are mixed, reflecting the direct and indirect effects of the African swine fever epidemic on food and feed markets.

14.
Nat Sustain ; 1(9): 477-485, 2018 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-30450426

RESUMO

How we manage farming and food systems to meet rising demand is pivotal to the future of biodiversity. Extensive field data suggest impacts on wild populations would be greatly reduced through boosting yields on existing farmland so as to spare remaining natural habitats. High-yield farming raises other concerns because expressed per unit area it can generate high levels of externalities such as greenhouse gas (GHG) emissions and nutrient losses. However, such metrics underestimate the overall impacts of lower-yield systems, so here we develop a framework that instead compares externality and land costs per unit production. Applying this to diverse datasets describing the externalities of four major farm sectors reveals that, rather than involving trade-offs, the externality and land costs of alternative production systems can co-vary positively: per unit production, land-efficient systems often produce lower externalities. For GHG emissions these associations become more strongly positive once forgone sequestration is included. Our conclusions are limited: remarkably few studies report externalities alongside yields; many important externalities and farming systems are inadequately measured; and realising the environmental benefits of high-yield systems typically requires additional measures to limit farmland expansion. Yet our results nevertheless suggest that trade-offs among key cost metrics are not as ubiquitous as sometimes perceived.

15.
Nature ; 562(7728): 519-525, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30305731

RESUMO

The food system is a major driver of climate change, changes in land use, depletion of freshwater resources, and pollution of aquatic and terrestrial ecosystems through excessive nitrogen and phosphorus inputs. Here we show that between 2010 and 2050, as a result of expected changes in population and income levels, the environmental effects of the food system could increase by 50-90% in the absence of technological changes and dedicated mitigation measures, reaching levels that are beyond the planetary boundaries that define a safe operating space for humanity. We analyse several options for reducing the environmental effects of the food system, including dietary changes towards healthier, more plant-based diets, improvements in technologies and management, and reductions in food loss and waste. We find that no single measure is enough to keep these effects within all planetary boundaries simultaneously, and that a synergistic combination of measures will be needed to sufficiently mitigate the projected increase in environmental pressures.


Assuntos
Agricultura/métodos , Agricultura/tendências , Meio Ambiente , Abastecimento de Alimentos , Desenvolvimento Sustentável , Mudança Climática , Produtos Agrícolas/metabolismo , Nitrogênio/metabolismo , Fósforo/metabolismo , Incerteza
16.
Environ Sci Technol ; 52(13): 7351-7359, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29923399

RESUMO

One of the main challenges for the 21st century is to balance the increasing demand for high-quality proteins while mitigating environmental impacts. In particular, cropland-based production of protein-rich animal feed for livestock rearing results in large-scale agricultural land-expansion, nitrogen pollution, and greenhouse gas emissions. Here we propose and analyze the long-term potential of alternative animal feed supply routes based on industrial production of microbial proteins (MP). Our analysis reveals that by 2050, MP can replace, depending on socio-economic development and MP production pathways, between 10-19% of conventional crop-based animal feed protein demand. As a result, global cropland area, global nitrogen losses from croplands and agricultural greenhouse gas emissions can be decreased by 6% (0-13%), 8% (-3-8%), and 7% (-6-9%), respectively. Interestingly, the technology to industrially produce MP at competitive costs is directly accessible for implementation and has the potential to cause a major structural change in the agro-food system.


Assuntos
Gases de Efeito Estufa , Gado , Agricultura , Ração Animal , Animais , Indústrias
17.
Sci Adv ; 2(9): e1501499, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27652336

RESUMO

The 17 Sustainable Development Goals (SDGs) call for a comprehensive new approach to development rooted in planetary boundaries, equity, and inclusivity. The wide scope of the SDGs will necessitate unprecedented integration of siloed policy portfolios to work at international, regional, and national levels toward multiple goals and mitigate the conflicts that arise from competing resource demands. In this analysis, we adopt a comprehensive modeling approach to understand how coherent policy combinations can manage trade-offs among environmental conservation initiatives and food prices. Our scenario results indicate that SDG strategies constructed around Sustainable Consumption and Production policies can minimize problem-shifting, which has long placed global development and conservation agendas at odds. We conclude that Sustainable Consumption and Production policies (goal 12) are most effective at minimizing trade-offs and argue for their centrality to the formulation of coherent SDG strategies. We also find that alternative socioeconomic futures-mainly, population and economic growth pathways-generate smaller impacts on the eventual achievement of land resource-related SDGs than do resource-use and management policies. We expect that this and future systems analyses will allow policy-makers to negotiate trade-offs and exploit synergies as they assemble sustainable development strategies equal in scope to the ambition of the SDGs.


Assuntos
Agricultura/economia , Comércio/economia , Desenvolvimento Econômico , Alimentos/economia , Conservação dos Recursos Naturais/economia , Humanos , Política Pública/economia , Fatores Socioeconômicos
18.
Proc Natl Acad Sci U S A ; 111(20): 7236-41, 2014 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-24778243

RESUMO

This study examines whether policies to encourage cattle ranching intensification in Brazil can abate global greenhouse gas (GHG) emissions by sparing land from deforestation. We use an economic model of global land use to investigate, from 2010 to 2030, the global agricultural outcomes, land use changes, and GHG abatement resulting from two potential Brazilian policies: a tax on cattle from conventional pasture and a subsidy for cattle from semi-intensive pasture. We find that under either policy, Brazil could achieve considerable sparing of forests and abatement of GHGs, in line with its national policy targets. The land spared, particularly under the tax, is far less than proportional to the productivity increased. However, the tax, despite prompting less adoption of semi-intensive ranching, delivers slightly more forest sparing and GHG abatement than the subsidy. This difference is explained by increased deforestation associated with increased beef consumption under the subsidy and reduced deforestation associated with reduced beef consumption under the tax. Complementary policies to directly limit deforestation could help limit these effects. GHG abatement from either the tax or subsidy appears inexpensive but, over time, the tax would become cheaper than the subsidy. A revenue-neutral combination of the policies could be an element of a sustainable development strategy for Brazil and other emerging economies seeking to balance agricultural development and forest protection.


Assuntos
Agricultura/métodos , Poluição do Ar/estatística & dados numéricos , Criação de Animais Domésticos/estatística & dados numéricos , Pegada de Carbono/estatística & dados numéricos , Efeito Estufa , Poluição do Ar/análise , Criação de Animais Domésticos/economia , Animais , Brasil , Carbono/análise , Bovinos , Simulação por Computador , Conservação dos Recursos Naturais/economia , Agricultura Florestal , Impostos
19.
Trop Anim Health Prod ; 43(5): 961-6, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21336502

RESUMO

Scavenging chicken production in Africa is important for the livelihood of the poor. In most countries, these low inputs, low output systems employ local breeds making use of the feeding resources available in the household. However, their replacement with introduced exotic breeds with higher productivities represents a risk for their conservation. Here, we present a simulation model to evaluate the impact of community-based interventions aiming to improve the profitability of local chicken breeds and promote their use and conservation. The results indicate that under the current conditions, farmers producing exotic chicken are able to sell more animals in a one year period; however the market price of local chicken makes their production more profitable. Vaccination campaigns significantly reduce the mortality rate of both breeds, having a positive effect on producers' income but its impact on animal off-take is larger for exotic breeds, and the availability of feeding resources is the limiting factor as the flock size increases. The results of the intervention are positive in terms of increasing farmers' income but do not clearly contribute to the conservation of indigenous breeds since after the vaccination campaign, the gap between the profitability of indigenous and exotic breeds is reduced. The simulation model indicates that under the current conditions, the conservation of indigenous chicken breeds in Benin is maintained by the existence of distinct niche markets with consumers able to pay higher prices for indigenous chicken. Policies for the conservation of chicken genetic resources in Benin are discussed.


Assuntos
Criação de Animais Domésticos/economia , Galinhas , Conservação dos Recursos Naturais/economia , Modelos Biológicos , Criação de Animais Domésticos/métodos , Animais , Benin , Cruzamento/economia , Humanos , Fatores Socioeconômicos
20.
Proc Natl Acad Sci U S A ; 107(17): 8035-40, 2010 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-20385803

RESUMO

Crop production is the single largest cause of human alteration of the global nitrogen cycle. We present a comprehensive assessment of global nitrogen flows in cropland for the year 2000 with a spatial resolution of 5 arc-minutes. We calculated a total nitrogen input (IN) of 136.60 trillion grams (Tg) of N per year, of which almost half is contributed by mineral nitrogen fertilizers, and a total nitrogen output (OUT) of 148.14 Tg of N per year, of which 55% is uptake by harvested crops and crop residues. We present high-resolution maps quantifying the spatial distribution of nitrogen IN and OUT flows, soil nitrogen balance, and surface nitrogen balance. The high-resolution data are aggregated at the national level on a per capita basis to assess nitrogen stress levels. The results show that almost 80% of African countries are confronted with nitrogen scarcity or nitrogen stress problems, which, along with poverty, cause food insecurity and malnutrition. The assessment also shows a global average nitrogen recovery rate of 59%, indicating that nearly two-fifths of nitrogen inputs are lost in ecosystems. More effective management of nitrogen is essential to reduce the deleterious environmental consequences.


Assuntos
Conservação dos Recursos Naturais/estatística & dados numéricos , Produtos Agrícolas/metabolismo , Ecossistema , Fixação de Nitrogênio , Nitrogênio/metabolismo , Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA