Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Poult Sci ; 103(2): 103354, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38154449

RESUMO

In this study, we incorporated deletion of the O-antigen ligase gene to an attenuated Salmonella Enteritidis (SE) strain, JOL919 (SE PS; Δlon ΔcpxR), using the Lambda-Red recombination method and evaluated the safety and immunological aspects of the novel genotype, JOL2381 (SE VS: Δlon, ΔcpxR, ΔrfaL). Assessment of fecal shedding and organ persistence following administration via oral and IM routes revealed that the SE VS was safer than its parent strain, SE PS. Immunological assays confirmed that immunization via the oral route with SE PS was superior to the SE VS. However, chickens immunized with SE PS and SE VS strains via the IM route showed higher humoral and cell-mediated immune responses. Compared to PBS control, the IM route of immunization with SE VS resulted in a higher IgY antibody titer and expansion of CD4+ and CD8+ T-cell populations, which resulted in the clearance of Salmonella from the liver and splenic tissues. Furthermore, deletion of the O-antigen ligase gene caused lower production of LPS-specific antibodies in the host, promoting DIVA functionality and making it a plausible candidate for field utilization. Due to significant protection, high attenuation, and environmental safety concerns, the present SE VS strain is an ideal choice to prevent chicken salmonellosis and ensure public health.


Assuntos
Doenças das Aves Domésticas , Intoxicação Alimentar por Salmonella , Salmonelose Animal , Vacinas contra Salmonella , Animais , Salmonella enteritidis , Galinhas , Antígenos O , Salmonelose Animal/prevenção & controle , Intoxicação Alimentar por Salmonella/veterinária , Ligases , Doenças das Aves Domésticas/prevenção & controle
2.
Pharmaceutics ; 15(5)2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37242581

RESUMO

Currently, there are no commercial vaccines or therapeutics against severe fever with thrombocytopenia syndrome (SFTS) virus. This study explored an engineered Salmonella as a vaccine carrier to deliver a eukaryotic self-mRNA replicating vector, pJHL204. This vector expresses multiple SFTS virus antigenic genes for the nucleocapsid protein (NP), glycoprotein precursor (Gn/Gc), and nonstructural protein (NS) to induce host immune responses. The engineered constructs were designed and validated through 3D structure modeling. Western blot and qRT-PCR analyses of transformed HEK293T cells confirmed the delivery and expression of the vaccine antigens. Significantly, mice immunized with these constructs demonstrated a cell-mediated and humoral response as balanced Th1/Th2 immunity. The JOL2424 and JOL2425 delivering NP and Gn/Gc generated strong immunoglobulin IgG and IgM antibodies and high neutralizing titers. To further examine the immunogenicity and protection, we utilized a human DC-SIGN receptor transduced mouse model for SFTS virus infection by an adeno-associated viral vector system. Among the SFTSV antigen constructs, the construct with full-length NP and Gn/Gc and the construct with NP and selected Gn/Gc epitopes induced robust cellular and humoral immune responses. These were followed by adequate protection based on viral titer reduction and reduced histopathological lesions in the spleen and liver. In conclusion, these data indicate that recombinant attenuated Salmonella JOL2424 and JOL2425 delivering NP and Gn/Gc antigens of SFTSV are promising vaccine candidates that induce strong humoral and cellular immune responses and protection against SFTSV. Moreover, the data proved that the hDC-SIGN transduced mice as a worthy tool for immunogenicity study for SFTSV.

3.
Vet Res ; 53(1): 76, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36183131

RESUMO

In the present study, two prospective Salmonella delivery strains, JOL2782 and JOL2837, were developed by gene deletions of lon and cpxR, which are related to cellular adhesion and intracellular survival. Additionally, sifA deletion was introduced for JOL2782, which confers immune susceptibility and improves antigen delivery. Similarly, the rfaL deletion and lpxE substitution for pagL were accomplished in JOL2837 to reduce virulence and endotoxicity. Thus, enhanced adhesion and invasion and reduced intracellular survival were attained. Furthermore, aspartic acid auxotrophic (asd) was deleted to impose Darwinian selection on retention of the foreign antigen-expressing plasmid. Both delivery strains induced sufficient cytokine expression, but the level was significantly lower than that of the wild-type strain; the lowest cytokine expression was induced by the JOL2837 strain, indicating reduced endotoxicity. In parallel, IgG production was significantly enhanced by both delivery strains. Thus, the innate and adaptive immunogenicity of the strains was ensured. The environmental safety of these strains was ascertained through faecal dissemination assays. The nonpathogenicity of these strains to the host was confirmed by body weight monitoring, survival assays, and morphological and histological assessments of the vital organs. The in vitro assay in murine and human cell lines and in vivo safety assessments in mice suggest that these novel strains possess safety, invasiveness, and immunogenicity, making them ideal delivery strains. Overall, the results clearly showed that strain JOL2782 with sifA deletion had higher invasiveness, demonstrating superior vaccine deliverability, while JOL2837 with lpxE substitution for pagL and rfaL deletion had outstanding safety potential with drastically abridged endotoxicity.


Assuntos
Antígenos O , Vacinas contra Salmonella , Animais , Ácido Aspártico , Citocinas , Humanos , Imunoglobulina G , Lipídeo A , Camundongos , Camundongos Endogâmicos BALB C , Salmonella typhimurium/genética , Vacinas Atenuadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA