Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Genet ; 20(1): 5, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30621578

RESUMO

BACKGROUND: Association studies are useful to unravel the genetic basis of common human diseases. However, the presence of undetected population structure can lead to both false positive results and failures to detect genuine associations. Even when most of the approaches to deal with population stratification require genome-wide data, the use of a well-selected panel of ancestry informative markers (AIMs) may appropriately correct for population stratification. Few panels of AIMs have been developed for Latino populations and most contain a high number of markers (> 100 AIMs). For some association studies such as candidate gene approaches, it may be unfeasible to genotype a numerous set of markers to avoid false positive results. In such cases, methods that use fewer AIMs may be appropriate. RESULTS: We validated an accurate and cost-effective panel of AIMs, for use in population stratification correction of association studies and global ancestry estimation in Mexicans, as well as in populations having large proportions of both European and Native American ancestries. Based on genome-wide data from 1953 Mexican individuals, we performed a PCA and SNP weights were calculated to select subsets of unlinked AIMs within percentiles 0.10 and 0.90, ensuring that all chromosomes were represented. Correlations between PC1 calculated using genome-wide data versus each subset of AIMs (16, 32, 48 and 64) were r2 = 0.923, 0.959, 0.972 and 0.978, respectively. When evaluating PCs performance as population stratification adjustment covariates, no correlation was found between P values obtained from uncorrected and genome-wide corrected association analyses (r2 = 0.141), highlighting that population stratification correction is compulsory for association analyses in admixed populations. In contrast, high correlations were found when adjusting for both PC1 and PC2 for either subset of AIMs (r2 > 0.900). After multiple validations, including an independent sample, we selected a minimal panel of 32 AIMs, which are highly informative of the major ancestral components of Mexican mestizos, namely European and Native American ancestries. Finally, the correlation between the global ancestry proportions calculated using genome-wide data and our panel of 32 AIMs was r2 = 0.972. CONCLUSIONS: Our panel of 32 AIMs accurately estimated global ancestry and corrected for population stratification in association studies in Mexican individuals.


Assuntos
Genética Populacional , Grupos Populacionais/genética , População Branca/genética , Análise Custo-Benefício , Genética Populacional/economia , Estudo de Associação Genômica Ampla , Humanos , México/etnologia , Polimorfismo de Nucleotídeo Único
2.
Bioinformatics ; 23(13): i167-74, 2007 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-17646293

RESUMO

MOTIVATION: The identification of risk-associated genetic variants in common diseases remains a challenge to the biomedical research community. It has been suggested that common statistical approaches that exclusively measure main effects are often unable to detect interactions between some of these variants. Detecting and interpreting interactions is a challenging open problem from the statistical and computational perspectives. Methods in computing science may improve our understanding on the mechanisms of genetic disease by detecting interactions even in the presence of very low heritabilities. RESULTS: We have implemented a method using Genetic Programming that is able to induce a Decision Tree to detect interactions in genetic variants. This method has a cross-validation strategy for estimating classification and prediction errors and tests for consistencies in the results. To have better estimates, a new consistency measure that takes into account interactions and can be used in a genetic programming environment is proposed. This method detected five different interaction models with heritabilities as low as 0.008 and with prediction errors similar to the generated errors. AVAILABILITY: Information on the generated data sets and executable code is available upon request.


Assuntos
Algoritmos , Mapeamento Cromossômico/métodos , Técnicas de Apoio para a Decisão , Epistasia Genética , Predisposição Genética para Doença/genética , Genética Populacional , Modelos Genéticos , Animais , Testes Genéticos/métodos , Humanos , Penetrância
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA