Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 24(5): 1611-1619, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38267020

RESUMO

The nanoscale arrangement of ligands can have a major effect on the activation of membrane receptor proteins and thus cellular communication mechanisms. Here we report on the technological development and use of tailored DNA origami-based molecular rulers to fabricate "Multiscale Origami Structures As Interface for Cells" (MOSAIC), to enable the systematic investigation of the effect of the nanoscale spacing of epidermal growth factor (EGF) ligands on the activation of the EGF receptor (EGFR). MOSAIC-based analyses revealed that EGF distances of about 30-40 nm led to the highest response in EGFR activation of adherent MCF7 and Hela cells. Our study emphasizes the significance of DNA-based platforms for the detailed investigation of the molecular mechanisms of cellular signaling cascades.


Assuntos
Fator de Crescimento Epidérmico , Receptores ErbB , Humanos , DNA/química , Fator de Crescimento Epidérmico/química , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Células HeLa , Ligantes , Transdução de Sinais
2.
Small ; 15(21): e1900564, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30977978

RESUMO

Dip-pen nanolithography (DPN) is a unique nanofabrication tool that can directly write a variety of molecular patterns on a surface with high resolution and excellent registration. Over the past 20 years, DPN has experienced a tremendous evolution in terms of applicable inks, a remarkable improvement in fabrication throughput, and the development of various derivative technologies. Among these developments, polymer pen lithography (PPL) is the most prominent one that provides a large-scale, high-throughput, low-cost tool for nanofabrication, which significantly extends DPN and beyond. These developments not only expand the scope of the wide field of scanning probe lithography, but also enable DPN and PPL as general approaches for the fabrication or study of nanostructures and nanomaterials. In this review, a focused summary and historical perspective of the technological development of DPN and its derivatives, with a focus on PPL, in one timeline, are provided and future opportunities for technological exploration in this field are proposed.

3.
Angew Chem Int Ed Engl ; 56(21): 5916-5920, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28370940

RESUMO

Acute subcellular protein targeting is a powerful tool to study biological networks. However, signaling at the plasma membrane is highly dynamic, making it difficult to study in space and time. In particular, sustained local control of molecular function is challenging owing to the lateral diffusion of plasma membrane targeted molecules. Herein we present "molecular activity painting" (MAP), a novel technology which combines photoactivatable chemically induced dimerization (pCID) with immobilized artificial receptors. The immobilization of artificial receptors by surface-immobilized antibodies blocks lateral diffusion, enabling rapid and stable "painting" of signaling molecules and their activity at the plasma membrane with micrometer precision. Using this method, we show that painting of the RhoA-myosin activator GEF-H1 induces patterned acto-myosin contraction inside living cells.


Assuntos
Membrana Celular/química , Proteínas de Ligação a DNA , Invenções , Luz , Fatores de Transcrição , Células Cultivadas , Proteínas de Ligação a DNA/química , Dimerização , Invenções/tendências , Fatores de Transcrição/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA