Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Lancet Planet Health ; 8(1): e18-e29, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38199717

RESUMO

BACKGROUND: Air pollution contributes to a large disease burden and some populations are disproportionately exposed. We aimed to evaluate ethnic and socioeconomic differences in exposure to air pollution in the Netherlands. METHODS: We did a nationwide, cross-sectional analysis of all residents of the Netherlands on Jan 1, 2019. Sociodemographic information was centralised by Statistics Netherlands and mainly originated from the National Population Register, the tax register, and education registers. Concentrations of NO2, PM2·5, PM10, and elemental carbon, modelled by the National Institute for Public Health and the Environment, were linked to the individual-level demographic data. We assessed differences in air pollution exposures across the 40 largest minority ethnic groups. Evaluation of how ethnicity intersected with socioeconomic position in relation to exposures was done for the ten largest ethnic groups, plus Chinese and Indian groups, in both urban and rural areas using multivariable linear regression analyses. FINDINGS: The total study population consisted of 17 251 511 individuals. Minority ethnic groups were consistently exposed to higher levels of air pollution than the ethnic Dutch population. The magnitude of inequalities varied between the minority ethnic groups, with 3-44% higher exposures to NO2 and 1-9% higher exposures to PM2·5 compared with the ethnic Dutch group. Average exposures were highest for the lowest socioeconomic group. Ethnic inequalities in exposure remained after adjustment for socioeconomic position and were of similar magnitude in urban and rural areas. INTERPRETATION: The variability in air pollution exposure across ethnic and socioeconomic subgroups in the Netherlands indicates environmental injustice at the intersection of social characteristics. The health consequences of the observed inequalities and the underlying processes driving them warrant further investigation. FUNDING: The Gravitation programme of the Dutch Ministry of Education, Culture, and Science, the Netherlands Organization for Scientific Research, the Netherlands Organisation for Health Research and Development, and Amsterdam University Medical Center.


Assuntos
Poluição do Ar , Dióxido de Nitrogênio , Humanos , Estudos Transversais , Países Baixos , Poluição do Ar/efeitos adversos , Fatores Socioeconômicos , Material Particulado/efeitos adversos
2.
Lancet Public Health ; 8(7): e546-e558, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37393093

RESUMO

BACKGROUND: Ambient air pollution is a major risk to health and wellbeing in European cities. We aimed to estimate spatial and sector-specific contributions of emissions to ambient air pollution and evaluate the effects of source-specific reductions in pollutants on mortality in European cities to support targeted source-specific actions to address air pollution and promote population health. METHODS: We conducted a health impact assessment of data from 2015 for 857 European cities to estimate source contributions to annual PM2·5 and NO2 concentrations using the Screening for High Emission Reduction Potentials for Air quality tool. We evaluated contributions from transport, industry, energy, residential, agriculture, shipping, and aviation, other, natural, and external sources. For each city and sector, three spatial levels were considered: contributions from the same city, the rest of the country, and transboundary. Mortality effects were estimated for adult populations (ie, ≥20 years) following standard comparative risk assessment methods to calculate the annual mortality preventable on spatial and sector-specific reductions in PM2·5 and NO2. FINDINGS: We observed strong variability in spatial and sectoral contributions among European cities. For PM2·5, the main contributors to mortality were the residential (mean contribution of 22·7% [SD 10·2]) and agricultural (18·0% [7·7]) sectors, followed by industry (13·8% [6·0]), transport (13·5% [5·8]), energy (10·0% [6·4]), and shipping (5·5% [5·7]). For NO2, the main contributor to mortality was transport (48·5% [SD 15·2]), with additional contributions from industry (15·0% [10·8]), energy (14·7% [12·9]), residential (10·3% [5·0]), and shipping (9·7% [12·7]). The mean city contribution to its own air pollution mortality was 13·5% (SD 9·9) for PM2·5 and 34·4% (19·6) for NO2, and contribution increased among cities of largest area (22·3% [12·2] for PM2·5 and 52·2% [19·4] for NO2) and among European capitals (29·9% [12·5] for PM2·5 and 62·7% [14·7] for NO2). INTERPRETATION: We estimated source-specific air pollution health effects at the city level. Our results show strong variability, emphasising the need for local policies and coordinated actions that consider city-level specificities in source contributions. FUNDING: Spanish Ministry of Science and Innovation, State Research Agency, Generalitat de Catalunya, Centro de Investigación Biomédica en red Epidemiología y Salud Pública, and Urban Burden of Disease Estimation for Policy Making 2023-2026 Horizon Europe project.


Assuntos
Poluição do Ar , Avaliação do Impacto na Saúde , Adulto , Humanos , Cidades , Dióxido de Nitrogênio , Poluição do Ar/efeitos adversos , Material Particulado
3.
Environ Res ; 224: 115552, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36822536

RESUMO

BACKGROUND: Fine particulate matter (PM2.5) is a well-recognized risk factor for premature death. However, evidence on which PM2.5 components are most relevant is unclear. METHODS: We evaluated the associations between mortality and long-term exposure to eight PM2.5 elemental components [copper (Cu), iron (Fe), zinc (Zn), sulfur (S), nickel (Ni), vanadium (V), silicon (Si), and potassium (K)]. Studied outcomes included death from diabetes, chronic kidney disease (CKD), dementia, and psychiatric disorders as well as all-natural causes, cardiovascular disease (CVD), respiratory diseases (RD), and lung cancer. We followed all residents in Denmark (aged ≥30 years) from January 1, 2000 to December 31, 2017. We used European-wide land-use regression models at a 100 × 100 m scale to estimate the residential annual mean levels of exposure to PM2.5 components. The models were developed with supervised linear regression (SLR) and random forest (RF). The associations were evaluated by Cox proportional hazard models adjusting for individual- and area-level socioeconomic factors and total PM2.5 mass. RESULTS: Of 3,081,244 individuals, we observed 803,373 death from natural causes during follow-up. We found significant positive associations between all-natural mortality with Si and K from both exposure modeling approaches (hazard ratios; 95% confidence intervals per interquartile range increase): SLR-Si (1.04; 1.03-1.05), RF-Si (1.01; 1.00-1.02), SLR-K (1.03; 1.02-1.04), and RF-K (1.06; 1.05-1.07). Strong associations of K and Si were detected with most causes of mortality except CKD and K, and diabetes and Si (the strongest associations for psychiatric disorders mortality). In addition, Fe was relevant for mortality from RD, lung cancer, CKD, and psychiatric disorders; Zn with mortality from CKD, RD, and lung cancer, and; Ni and V with lung cancer mortality. CONCLUSIONS: We present novel results of the relevance of different PM2.5 components for different causes of death, with K and Si seeming to be most consistently associated with mortality in Denmark.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Exposição Ambiental , Mortalidade , Humanos , Poluentes Atmosféricos/análise , Poluição do Ar/estatística & dados numéricos , Causas de Morte , Estudos de Coortes , Dinamarca/epidemiologia , Exposição Ambiental/análise , Exposição Ambiental/estatística & dados numéricos , Neoplasias Pulmonares/mortalidade , Níquel , Material Particulado/análise , Insuficiência Renal Crônica/mortalidade , Doenças Respiratórias/mortalidade , Zinco/análise
4.
BMJ Open ; 12(1): e054270, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35058262

RESUMO

INTRODUCTION: Cities have long been known to be society's predominant engine of innovation and wealth creation, yet they are also hotspots of pollution and disease partly due to current urban and transport practices. The aim of the European Urban Burden of Disease project is to evaluate the health burden and its determinants related to current and future potential urban and transport planning practices and related exposures in European cities and make this evidence available for policy and decision making for healthy and sustainable futures. METHODS AND ANALYSIS: Drawing on an established comparative risk assessment methodology (ie, Urban and Transport Planning Health Impact Assessment) tool), in nearly 1000 European cities we will (1) quantify the health impacts of current urban and transport planning related exposures (eg, air pollution, noise, excess heat, lack of green space) (2) and evaluate the relationship between current levels of exposure, health impacts and city characteristics (eg, size, density, design, mobility) (3) rank and compare the cities based on exposure levels and the health impacts, (4) in a number of selected cities assess in-depth the linkages between urban and transport planning, environment, physical activity and health, and model the health impacts of alternative and realistic urban and transport planning scenarios, and, finally, (5) construct a healthy city index and set up an effective knowledge translation hub to generate impact in society and policy. ETHICS AND DISSEMINATION: All data to be used in the project are publicly available data and do not need ethics approval. We will request consent for personal data on opinions and views and create data agreements for those providing information on current and future urban and transport planning scenarios.For dissemination and to generate impact, we will create a knowledge translation hub with information tailored to various stakeholders.


Assuntos
Poluição do Ar , Avaliação do Impacto na Saúde , Poluição do Ar/efeitos adversos , Cidades , Planejamento de Cidades , Efeitos Psicossociais da Doença , Humanos , Saúde da População Urbana
5.
Sci Total Environ ; 804: 150091, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34517316

RESUMO

BACKGROUND: Ambient air pollution exposure has been associated with higher mortality risk in numerous studies. We assessed potential variability in the magnitude of this association for non-accidental, cardiovascular disease, respiratory disease, and lung cancer mortality in a country-wide administrative cohort by exposure assessment method and by adjustment for geographic subdivisions. METHODS: We used the Belgian 2001 census linked to population and mortality register including nearly 5.5 million adults aged ≥30 (mean follow-up: 9.97 years). Annual mean concentrations for fine particulate matter (PM2.5), nitrogen dioxide (NO2), black carbon (BC) and ozone (O3) were assessed at baseline residential address using two exposure methods; Europe-wide hybrid land use regression (LUR) models [100x100m], and Belgium-wide interpolation-dispersion (RIO-IFDM) models [25x25m]. We used Cox proportional hazards models with age as the underlying time scale and adjusted for various individual and area-level covariates. We further adjusted main models for two different area-levels following the European Nomenclature of Territorial Units for Statistics (NUTS); NUTS-1 (n = 3), or NUTS-3 (n = 43). RESULTS: We found no consistent differences between both exposure methods. We observed most robust associations with lung cancer mortality. Hazard Ratios (HRs) per 10 µg/m3 increase for NO2 were 1.060 (95%CI 1.042-1.078) [hybrid LUR] and 1.040 (95%CI 1.022-1.058) [RIO-IFDM]. Associations with non-accidental, respiratory disease and cardiovascular disease mortality were generally null in main models but were enhanced after further adjustment for NUTS-1 or NUTS-3. HRs for non-accidental mortality per 5 µg/m3 increase for PM2.5 for the main model using hybrid LUR exposure were 1.023 (95%CI 1.011-1.035). After including random effects HRs were 1.044 (95%CI 1.033-1.057) [NUTS-1] and 1.076 (95%CI 1.060-1.092) [NUTS-3]. CONCLUSION: Long-term air pollution exposure was associated with higher lung cancer mortality risk but not consistently with the other studied causes. Magnitude of associations varied by adjustment for geographic subdivisions, area-level socio-economic covariates and less by exposure assessment method.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Adulto , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Poluição do Ar/análise , Poluição do Ar/estatística & dados numéricos , Censos , Estudos de Coortes , Exposição Ambiental/análise , Exposição Ambiental/estatística & dados numéricos , Humanos , Material Particulado/análise , Material Particulado/toxicidade
6.
Environ Res ; 202: 111710, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34280420

RESUMO

BACKGROUND: To investigate associations between annual average air pollution exposures and health, most epidemiological studies rely on estimated residential exposures because information on actual time-activity patterns can only be collected for small populations and short periods of time due to costs and logistic constraints. In the current study, we aim to compare exposure assessment methodologies that use data on time-activity patterns of children with residence-based exposure assessment. We compare estimated exposures and associations with lung function for residential exposures and exposures accounting for time activity patterns. METHODS: We compared four annual average air pollution exposure assessment methodologies; two rely on residential exposures only, the other two incorporate estimated time activity patterns. The time-activity patterns were based on assumptions about the activity space and make use of available external data sources for the duration of each activity. Mapping of multiple air pollutants (NO2, NOX, PM2.5, PM2.5absorbance, PM10) at a fine resolution as input to exposure assessment was based on land use regression modelling. First, we assessed the correlations between the exposures from the four exposure methods. Second, we compared estimates of the cross-sectional associations between air pollution exposures and lung function at age 8 within the PIAMA birth cohort study for the four exposure assessment methodologies. RESULTS: The exposures derived from the four exposure assessment methodologies were highly correlated (R > 0.95) for all air pollutants. Similar statistically significant decreases in lung function were found for all four methods. For example, for NO2 the decrease in FEV1 was -1.40% (CI; -2.54, -0.24%) per IQR (9.14 µg/m3) for front door exposure, and -1.50% (CI; -2.68, -0.30%) for the methodology which incorporates time activity pattern and actual school addresses. CONCLUSIONS: Exposure estimates from methods based on the residential location only and methods including time activity patterns were highly correlated and associated with similar decreases in lung function. Our study illustrates that the annual average exposure to air pollution for 8-year-old children in the Netherlands is sufficiently captured by residential exposures.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Poluição do Ar/análise , Poluição do Ar/estatística & dados numéricos , Criança , Estudos de Coortes , Estudos Transversais , Exposição Ambiental/análise , Exposição Ambiental/estatística & dados numéricos , Humanos , Pulmão/química , Material Particulado/análise , Material Particulado/toxicidade
7.
Lancet Planet Health ; 5(3): e121-e134, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33482109

RESUMO

BACKGROUND: Ambient air pollution is a major environmental cause of morbidity and mortality worldwide. Cities are generally hotspots for air pollution and disease. However, the exact extent of the health effects of air pollution at the city level is still largely unknown. We aimed to estimate the proportion of annual preventable deaths due to air pollution in almost 1000 cities in Europe. METHODS: We did a quantitative health impact assessment for the year 2015 to estimate the effect of air pollution exposure (PM2·5 and NO2) on natural-cause mortality for adult residents (aged ≥20 years) in 969 cities and 47 greater cities in Europe. We retrieved the cities and greater cities from the Urban Audit 2018 dataset and did the analysis at a 250 m grid cell level for 2015 data based on the global human settlement layer residential population. We estimated the annual premature mortality burden preventable if the WHO recommended values (ie, 10 µg/m3 for PM2·5 and 40 µg/m3 for NO2) were achieved and if air pollution concentrations were reduced to the lowest values measured in 2015 in European cities (ie, 3·7 µg/m3 for PM2·5 and 3·5 µg/m3 for NO2). We clustered and ranked the cities on the basis of population and age-standardised mortality burden associated with air pollution exposure. In addition, we did several uncertainty and sensitivity analyses to test the robustness of our estimates. FINDINGS: Compliance with WHO air pollution guidelines could prevent 51 213 (95% CI 34 036-68 682) deaths per year for PM2·5 exposure and 900 (0-2476) deaths per year for NO2 exposure. The reduction of air pollution to the lowest measured concentrations could prevent 124 729 (83 332-166 535) deaths per year for PM2·5 exposure and 79 435 (0-215 165) deaths per year for NO2 exposure. A great variability in the preventable mortality burden was observed by city, ranging from 0 to 202 deaths per 100 000 population for PM2·5 and from 0 to 73 deaths for NO2 per 100 000 population when the lowest measured concentrations were considered. The highest PM2·5 mortality burden was estimated for cities in the Po Valley (northern Italy), Poland, and Czech Republic. The highest NO2 mortality burden was estimated for large cities and capital cities in western and southern Europe. Sensitivity analyses showed that the results were particularly sensitive to the choice of the exposure response function, but less so to the choice of baseline mortality values and exposure assessment method. INTERPRETATION: A considerable proportion of premature deaths in European cities could be avoided annually by lowering air pollution concentrations, particularly below WHO guidelines. The mortality burden varied considerably between European cities, indicating where policy actions are more urgently needed to reduce air pollution and achieve sustainable, liveable, and healthy communities. Current guidelines should be revised and air pollution concentrations should be reduced further to achieve greater protection of health in cities. FUNDING: Spanish Ministry of Science and Innovation, Internal ISGlobal fund.


Assuntos
Poluição do Ar/efeitos adversos , Mortalidade Prematura , Saúde da População Urbana/estatística & dados numéricos , Adulto , Poluentes Atmosféricos/efeitos adversos , Cidades , Exposição Ambiental/efeitos adversos , Exposição Ambiental/normas , Europa (Continente) , Avaliação do Impacto na Saúde , Humanos , Dióxido de Nitrogênio/efeitos adversos , Material Particulado/efeitos adversos
8.
Epidemiol Prev ; 43(4): 223-237, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31650778

RESUMO

BACKGROUND: human exposure to mixtures of chemicals of toxicological interest, typically found in industrial contaminated sites (ICSs), has been associated with a broad range of different health outcomes. Deprived population groups endure most of the burden of disease and premature death associated to the exposure to those pollutants. Characterising the impacts on health of an ICS is a challenging process. Currently the two main methodological approaches used are Human Health Risk Assessment (HHRA) and Environmental Epidemiological (EE) studies. OBJECTIVES: review existing guidance and scientific evidence for HHRA and EE studies applied to contaminated sites that orientate in selecting the most suitable methodological approach for characterising health impacts in ICSs according to the site characteristics, and the availability of environmental, health and sociodemographic data. RESULTS: HHRA has evolved into a more holistic approach, placing more emphasis in planning, community involvement and adapting the dimension of the assessment to the problem formulation and to the availability of resources. Many different HHRA guidelines for contaminated sites has been published worldwide, and although they share a similar framework, the scientific evidence used for deriving reference values and the variet of policy options can result in a wide variability of health risk estimates. This paper condenses different options with the recommendations to use those tools, default values for environmental and exposure levels and toxicological reference values that most suit to the population and characteristics of the ICSs under evaluation. CONCLUSIONS: the suitability to use one or another approach to assess the impact of ICSs on health depends on the availability of data, cost-benefit aspects and the kind of problem that needs to be answered. Risk assessment based on toxicological data can be very rapid and cheap, providing direct information when the intervention to protect the health of population is urgent and no suitable dose-response functions are available from epidemiological studies. Conducting EE studies provide a deeper insight into the problem of the exposure to industrial pollutants that do not require extrapolation from data obtained from toxicological studies or other population, addressing the community concern's more directly. Complementing the results obtained from different approaches, including those from public health surveillance systems, might provide an efficient and complete response to the impact of ICSs.


Assuntos
Coleta de Dados , Exposição Ambiental , Poluentes Ambientais/efeitos adversos , Estudos Epidemiológicos , Avaliação do Impacto na Saúde/métodos , Indústrias , Medição de Risco/métodos , Humanos , Itália
9.
Epidemiol Prev ; 43(4): 249-259, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31650780

RESUMO

BACKGROUND: the mixed and complex nature of industrially contaminated sites (ICSs) leads to heterogeneity in exposure and health risk of residents living nearby. Health, environment, and social aspects are strongly interconnected in ICSs, and local communities are often concerned about potential health impact and needs for remediation. The use of human biomonitoring (HBM) for impact assessment of environmental exposure is increasing in Europe. The COST Action IS1408 on Industrially Contaminated Sites and Health Network (ICSHNet) decided to reflect on the potential and limitations of HBM to assess exposure and early health effects associated with living near ICSs. OBJECTIVES: to discuss challenges and lessons learned for addressing environmental health impact near ICSs with HBM in order to identify needs and priorities for HBM guidelines in European ICSs. METHODS: based on the experience of the ICSHNet research team, six case studies from different European regions that applied HBM at ICSs were selected. The case studies were systematically compared distinguishing four phases: the preparatory phase; study design; study results; the impact of the results at scientific, societal, and political levels. RESULTS: all six case studies identified opportunities and challenges for applying HBM in ICS studies. A smart choice of (a combination of) sample matrices for biomarker analysis produced information about relevant time-windows of exposure which matched with the activities of the ICSs. Combining biomarkers of exposure with biomarkers of (early) biological effects, data from questionnaires or environmental data enabled fine-tuning of the results and allowed for more targeted remediating actions aimed to reduce exposure. Open and transparent communication of study results with contextual information and involvement of local stakeholders throughout the study helped to build confidence in the study results, gained support for remediating actions, and facilitated sharing of responsibilities. Using HBM in these ICS studies helped in setting priorities in policy actions and in further research. Limitations were the size of the study population, difficulties in recruiting vulnerable target populations, availability of validated biomarkers, and coping with exposure to mixtures of chemicals. CONCLUSIONS: based on the identified positive experiences and challenges, the paper concludes with formulating recommendations for a European protocol and guidance document for HBM in ICS. This could advance the use of HBM in local environmental health policy development and evaluation of exposure levels, and promote coordination and collaboration between researchers and risk managers.


Assuntos
Monitoramento Biológico , Exposição Ambiental , Poluição Ambiental , Indústrias , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Poluição Ambiental/efeitos adversos , Poluição Ambiental/análise , Europa (Continente) , Humanos
10.
Environ Health Perspect ; 127(6): 67001, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31157976

RESUMO

BACKGROUND: Exposure to light at night (LAN) can perturb the biological clock and affect sleep and health. Previous epidemiological studies have evaluated LAN levels measured by satellites, but the validity of this measure as a proxy for personal LAN exposure is unclear. In addition, outdoor satellite-measured LAN levels are higher in urban environments, which means that this measure could potentially represent a proxy for other, likely urban, environmental exposures. OBJECTIVES: We evaluated correlations of satellite-assessed LAN with measured bedroom light levels and explored correlations with other environmental exposures, in particular, air pollution, green space, and area-level socioeconomic position (SEP). METHODS: We compared satellite measurements with evening and nighttime bedroom measurements of illuminance (in units of lux) for 256 children, and we evaluated correlations between satellite-based measures and other urban exposures such as air pollution, area-level SEP, and surrounding green space for 3,021 children. RESULTS: Satellite-measured LAN levels (nanowatts per centimeter squared per steradian) were not correlated with measured evening or nighttime lux levels [Spearman correlation coefficients ([Formula: see text]) [Formula: see text] to 0.04]. There was a weak correlation with measurements during the darkest time period if parents and their children reported that outdoor light sometimes or usually influenced indoor light levels ([Formula: see text], [Formula: see text]). In contrast, satellite-measured LAN levels were correlated with air pollution ([Formula: see text] with [Formula: see text], [Formula: see text] with [Formula: see text]), and surrounding green space ([Formula: see text] for green space within [Formula: see text] of the home). A weak correlation with area-level SEP was also observed ([Formula: see text]). CONCLUSIONS: Outdoor satellite-assessed outdoor LAN exposure levels were correlated with urban environmental exposures, but they were not a good proxy for indoor evening or nighttime personal exposure as measured in our study population of 12-y-old children. Studies planning to evaluate potential risks from LAN should consider such modifying factors as curtains and indoor lighting and the use of electronic devices and should include performing indoor or personal measurements to validate any exposure proxies. The moderate-to-strong correlation of outdoor LAN with other environmental exposures should be accounted for in epidemiological investigations. https://doi.org/10.1289/EHP3431.


Assuntos
Exposição Ambiental/análise , Luz , Imagens de Satélites , Poluição do Ar/análise , Criança , Feminino , Humanos , Masculino , Países Baixos , Fatores Socioeconômicos , População Urbana
11.
Epidemiol Prev ; 42(5-6S1): 21-36, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30322233

RESUMO

BACKGROUND: this paper is based upon work from COST Action ICSHNet. Health risks related to living close to industrially contaminated sites (ICSs) are a public concern. Toxicology-based risk assessment of single contaminants is the main approach to assess health risks, but epidemiological studies which investigate the relationships between exposure and health directly in the affected population have contributed important evidence. Limitations in exposure assessment have substantially contributed to uncertainty about associations found in epidemiological studies. OBJECTIVES: to examine exposure assessment methods that have been used in epidemiological studies on ICSs and to provide recommendations for improved exposure assessment in epidemiological studies by comparing exposure assessment methods in epidemiological studies and risk assessments. METHODS: after defining the multi-media framework of exposure related to ICSs, we discussed selected multi-media models applied in Europe. We provided an overview of exposure assessment in 54 epidemiological studies from a systematic review of hazardous waste sites; a systematic review of 41 epidemiological studies on incinerators and 52 additional studies on ICSs and health identified for this review. RESULTS: we identified 10 multi-media models used in Europe primarily for risk assessment. Recent models incorporated estimation of internal biomarker levels. Predictions of the models differ particularly for the routes 'indoor air inhalation' and 'vegetable consumption'. Virtually all of the 54 hazardous waste studies used proximity indicators of exposure, based on municipality or zip code of residence (28 studies) or distance to a contaminated site (25 studies). One study used human biomonitoring. In virtually all epidemiological studies, actual land use was ignored. In the 52 additional studies on contaminated sites, proximity indicators were applied in 39 studies, air pollution dispersion modelling in 6 studies, and human biomonitoring in 9 studies. Exposure assessment in epidemiological studies on incinerators included indicators (presence of source in municipality and distance to the incinerator) and air dispersion modelling. Environmental multi-media modelling methods were not applied in any of the three groups of studies. CONCLUSIONS: recommendations for refined exposure assessment in epidemiological studies included the use of more sophisticated exposure metrics instead of simple proximity indicators where feasible, as distance from a source results in misclassification of exposure as it ignores key determinants of environmental fate and transport, source characteristics, land use, and human consumption behaviour. More validation studies using personal exposure or human biomonitoring are needed to assess misclassification of exposure. Exposure assessment should take more advantage of the detailed multi-media exposure assessment procedures developed for risk assessment. The use of indicators can be substantially improved by linking definition of zones of exposure to existing knowledge of extent of dispersion. Studies should incorporate more often land use and individual behaviour.


Assuntos
Exposição Ambiental , Poluição Ambiental , Estudos Epidemiológicos , Indústrias , Monitoramento Ambiental , Guias como Assunto , Humanos , Modelos Teóricos , Medição de Risco
12.
Health Place ; 49: 68-84, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29227885

RESUMO

The aim of our study was to investigate the association between health enhancing and threatening, and social and physical aspects of the neighbourhood environment and general practitioner (GP) assessed morbidity of the people living there, in order to find out whether the effects of environmental characteristics add up or modify each other. We combined GP electronic health records with environmental data on neighbourhoods in the Netherlands. Cross-classified logistic multilevel models show the importance of taking into account several environmental characteristics and confounders, as social capital effects on the prevalence of morbidity disappear when other area characteristics are taken into account. Stratification by area socio-economic status, shows that the association between environmental characteristics and the prevalence of morbidity is stronger for people living in low SES areas. In low SES areas, green space seems to alleviate effects of air pollution on the prevalence of high blood pressure and diabetes, while the effects of green space and social capital reinforce each other.


Assuntos
Meio Ambiente , Clínicos Gerais , Morbidade/tendências , Características de Residência , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Registros Eletrônicos de Saúde , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Países Baixos , Capital Social , Fatores Socioeconômicos , Adulto Jovem
13.
Environ Int ; 92-93: 202-9, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27107225

RESUMO

Robust methods to estimate historic population air pollution exposures are important tools for epidemiological studies evaluating long-term health effects. We developed land use regression (LUR) models for NO2 exposure in Great Britain for 1991 and explored whether the choice of year-specific or back-extrapolated LUR yields 1) similar LUR variables and model performance, and 2) similar national and regional address-level and small-area concentrations. We constructed two LUR models for 1991using NO2 concentrations from the diffusion tube monitoring network, one using 75% of all available measurement sites (that over-represent industrial areas), and the other using 75% of a subset of sites proportionate to population by region to study the effects of monitoring site selection bias. We compared, using the remaining (hold-out) 25% of monitoring sites, the performance of the two 1991 models with back-extrapolation of a previously published 2009 model, developed using NO2 concentrations from automatic chemiluminescence monitoring sites and predictor variables from 2006/2007. The 2009 model was back-extrapolated to 1991 using the same predictors (1990 & 1995) used to develop 1991 models. The 1991 models included industrial land use variables, not present for 2009. The hold-out performance of 1991 models (mean-squared-error-based-R(2): 0.62-0.64) was up to 8% higher and ~1µg/m(3) lower in root mean squared error than the back-extrapolated 2009 model, with best performance from the subset of sites representing population exposures. Year-specific and back-extrapolated exposures for residential addresses (n=1.338,399) and small areas (n=10.518) were very highly linearly correlated for Great Britain (r>0.83). This study suggests that year-specific model for 1991 and back-extrapolation of the 2009 LUR yield similar exposure assessment.


Assuntos
Poluentes Atmosféricos/química , Poluição do Ar/análise , Monitoramento Ambiental/métodos , Dióxido de Nitrogênio/química , Humanos , Modelos Teóricos , Análise de Regressão , Reino Unido
14.
Environ Pollut ; 198: 201-10, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25622242

RESUMO

Air pollution levels are generally believed to be higher in deprived areas but associations are complex especially between sensitive population subgroups. We explore air pollution inequalities at national, regional and city level in England and the Netherlands comparing particulate matter (PM10) and nitrogen dioxide (NO2) concentrations and publicly available population characteristics (deprivation, ethnicity, proportion of children and elderly). We saw higher concentrations in the most deprived 20% of neighbourhoods in England (1.5 µg/m(3) higher PM10 and 4.4 µg/m(3) NO2). Concentrations in both countries were higher in neighbourhoods with >20% non-White (England: 3.0 µg/m(3) higher PM10 and 10.1 µg/m(3) NO2; the Netherlands: 1.1 µg/m(3) higher PM10 and 4.5 µg/m(3) NO2) after adjustment for urbanisation and other variables. Associations for some areas differed from the national results. Air pollution inequalities were mainly an urban problem suggesting measures to reduce environmental air pollution inequality should include a focus on city transport.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/estatística & dados numéricos , Exposição Ambiental/estatística & dados numéricos , Idoso , Poluição do Ar/análise , Criança , Inglaterra , Etnicidade , Feminino , Humanos , Masculino , Países Baixos , Dióxido de Nitrogênio/análise , Material Particulado/análise , Pobreza , Áreas de Pobreza , Fatores Socioeconômicos , Fatores de Tempo
15.
BMC Public Health ; 13: 71, 2013 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-23351567

RESUMO

BACKGROUND: Socioeconomic variables are associated with mortality and morbidity in a variety of diseases at both the individual and neighborhood level. Investigating whether low socioeconomic status populations are exposed to higher air pollution has been an important objective for the scientific community during the last decade. The goal of this study was to analyze the associations between outdoor nitrogen dioxide (NO2) concentrations in an area of Asturias (Spain) and two socioeconomic indexes-one based on occupation and the other on educational level at the census-tract level. METHODS: A map of NO2 concentration was obtained from a land-use regression model. To obtain a census-tract average value, NO2 was estimated at the centroids of all 50 × 50 grids within a census tract. Standard socioeconomic variables were used from the Census of Population and Housing 2001. We analyzed the association between NO2 concentration and socioeconomic indicators for the entire area and stratified for more urban and more rural areas. RESULTS: A positive linear relationship was found between the levels of education and NO2 exposure in the urban area and the overall study area, but no association was found in the rural area. A positive association between socioeconomic index based upon occupation and NO2 concentration was found in urban areas; however, this association was reversed in the rural and overall study areas. CONCLUSIONS: The strength and direction of the association between socioeconomic status and NO2 concentration depended on the socioeconomic indicator used and the characteristics of the study area (urban, rural). More research is needed with different scenarios to clarify the uncertain relationship among socioeconomic indexes, particularly in non-urban areas, where little has been documented on this topic.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/análise , Exposição Ambiental/análise , Dióxido de Nitrogênio/análise , População Rural , Classe Social , População Urbana , Adolescente , Adulto , Escolaridade , Nível de Saúde , Humanos , Pessoa de Meia-Idade , Ocupações , Características de Residência , Espanha , Adulto Jovem
16.
Environ Health ; 10: 30, 2011 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-21481231

RESUMO

BACKGROUND: Risk assessment requires dose-response data for the evaluation of the relationship between exposure to an environmental stressor and the probability of developing an adverse health effect. Information from human studies is usually limited and additional results from animal studies are often needed for the assessment of risks in humans. Combination of risk estimates requires an assessment and correction of the important biases in the two types of studies. In this paper we aim to illustrate a quantitative approach to combining data from human and animal studies after adjusting for bias in human studies. For our purpose we use the example of the association between exposure to diesel exhaust and occurrence of lung cancer. METHODS: Firstly, we identify and adjust for the main sources of systematic error in selected human studies of the association between occupational exposure to diesel exhaust and occurrence of lung cancer. Evidence from selected animal studies is also accounted for by extrapolating to average ambient, occupational exposure concentrations of diesel exhaust. In a second stage, the bias adjusted effect estimates are combined in a common effect measure through meta-analysis. RESULTS: The random-effects pooled estimate (RR) for exposure to diesel exhaust vs. non-exposure was found 1.37 (95% C.I.: 1.08-1.65) in animal studies and 1.59 (95% C.I.: 1.09-2.10) in human studies, whilst the overall was found equal to 1.49 (95% C.I.: 1.21-1.78) with a greater contribution from human studies. Without bias adjustment in human studies, the pooled effect estimate was 1.59 (95% C.I.: 1.28-1.89). CONCLUSIONS: Adjustment for the main sources of uncertainty produced lower risk estimates showing that ignoring bias leads to risk estimates potentially biased upwards.


Assuntos
Neoplasias Pulmonares/epidemiologia , Doenças Profissionais/epidemiologia , Exposição Ocupacional , Emissões de Veículos/toxicidade , Animais , Viés , Cricetinae , Modelos Animais de Doenças , Estudos Epidemiológicos , Feminino , Humanos , Masculino , Camundongos , Ratos , Medição de Risco/métodos
17.
Environ Int ; 37(4): 766-77, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21419493

RESUMO

BACKGROUND: Substantial policy changes to control obesity, limit chronic disease, and reduce air pollution emissions, including greenhouse gasses, have been recommended. Transportation and planning policies that promote active travel by walking and cycling can contribute to these goals, potentially yielding further co-benefits. Little is known, however, about the interconnections among effects of policies considered, including potential unintended consequences. OBJECTIVES AND METHODS: We review available literature regarding health impacts from policies that encourage active travel in the context of developing health impact assessment (HIA) models to help decision-makers propose better solutions for healthy environments. We identify important components of HIA models of modal shifts in active travel in response to transport policies and interventions. RESULTS AND DISCUSSION: Policies that increase active travel are likely to generate large individual health benefits through increases in physical activity for active travelers. Smaller, but population-wide benefits could accrue through reductions in air and noise pollution. Depending on conditions of policy implementations, risk tradeoffs are possible for some individuals who shift to active travel and consequently increase inhalation of air pollutants and exposure to traffic injuries. Well-designed policies may enhance health benefits through indirect outcomes such as improved social capital and diet, but these synergies are not sufficiently well understood to allow quantification at this time. CONCLUSION: Evaluating impacts of active travel policies is highly complex; however, many associations can be quantified. Identifying health-maximizing policies and conditions requires integrated HIAs.


Assuntos
Exercício Físico , Política de Saúde , Meios de Transporte/estatística & dados numéricos , Viagem , Acidentes de Trânsito/estatística & dados numéricos , Poluição do Ar/efeitos adversos , Poluição do Ar/estatística & dados numéricos , Ciclismo/estatística & dados numéricos , Exposição Ambiental/estatística & dados numéricos , Política Ambiental , Comportamentos Relacionados com a Saúde , Nível de Saúde , Temperatura Alta/efeitos adversos , Humanos , Ruído dos Transportes/efeitos adversos , Ruído dos Transportes/estatística & dados numéricos , Luz Solar/efeitos adversos , Caminhada/estatística & dados numéricos
18.
Eur J Epidemiol ; 26(1): 45-54, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20882323

RESUMO

Studies of the relationships between low socio-economic status and impaired lung function were conducted mainly in Western European countries and North America. East-West differences remain unexplored. Associations between parental education and lung function were explored using data on 24,010 school-children from eight cross-sectional studies conducted in North America, Western and Eastern Europe. Parental education was defined as low and high using country-specific classifications. Country-specific estimates of effects of low parental education on volume and flow parameters were obtained using linear and logistic regression, controlling for early life and other individual risk factors. Meta-regressions were used for assessment of heterogeneity between country-specific estimates. The association between low parental education and lung function was not consistent across the countries, but showed a more pronounced inverse gradient in the Western countries. The most consistent decrease associated with low parental education was found for peak expiratory flow (PEF), ranging from -2.80 to -1.14%, with statistically significant associations in five out of eight countries. The mean odds ratio for low PEF (<75% of predicted) was 1.34 (95% CI 1.06-1.70) after all adjustments. Although social gradients were attenuated after adjusting for known risk factors, these risk factors could not completely explain the social gradient in lung function.


Assuntos
Pulmão/fisiologia , Pais , Classe Social , Criança , Estudos Transversais , Escolaridade , Europa (Continente) , Indicadores Básicos de Saúde , Humanos , América do Norte , Análise de Regressão , Testes de Função Respiratória
19.
Environ Health ; 6: 7, 2007 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-17302981

RESUMO

BACKGROUND: Several countries are discussing new legislation on the ban of smoking in public places, and on the acceptable levels of traffic-related air pollutants. It is therefore useful to estimate the burden of disease associated with indoor and outdoor air pollution. METHODS: We have estimated exposure to Environmental Tobacco Smoke (ETS) and to air pollution in never smokers and ex-smokers in a large prospective study in 10 European countries (European Prospective Investigation into Cancer and Nutrition)(N = 520,000). We report estimates of the proportion of lung cancers attributable to ETS and air pollution in this population. RESULTS: The proportion of lung cancers in never- and ex-smokers attributable to ETS was estimated as between 16 and 24%, mainly due to the contribution of work-related exposure. We have also estimated that 5-7% of lung cancers in European never smokers and ex-smokers are attributable to high levels of air pollution, as expressed by NO2 or proximity to heavy traffic roads. NO2 is the expression of a mixture of combustion (traffic-related) particles and gases, and is also related to power plants and waste incinerator emissions. DISCUSSION: We have estimated risks of lung cancer attributable to ETS and traffic-related air pollution in a large prospective study in Europe. Information bias can be ruled out due to the prospective design, and we have thoroughly controlled for potential confounders, including restriction to never smokers and long-term ex-smokers. Concerning traffic-related air pollution, the thresholds for indicators of exposure we have used are rather strict, i.e. they correspond to the high levels of exposure that characterize mainly Southern European countries (levels of NO2 in Denmark and Sweden are closer to 10-20 ug/m3, whereas levels in Italy are around 30 or 40, or higher).Therefore, further reduction in exposure levels below 30 ug/m3 would correspond to additional lung cancer cases prevented, and our estimate of 5-7% is likely to be an underestimate. Overall, our prospective study draws attention to the need for strict legislation concerning the quality of air in Europe.


Assuntos
Poluição do Ar/estatística & dados numéricos , Efeitos Psicossociais da Doença , Neoplasias Pulmonares/epidemiologia , Poluição por Fumaça de Tabaco/estatística & dados numéricos , Poluentes Atmosféricos , Estudos de Casos e Controles , Causalidade , Estudos de Coortes , Europa (Continente)/epidemiologia , Humanos , Exposição por Inalação/estatística & dados numéricos , Razão de Chances , Prevalência , Estudos Prospectivos , Medição de Risco
20.
Lancet ; 360(9341): 1203-9, 2002 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-12401246

RESUMO

BACKGROUND: Long-term exposure to particulate matter air pollution has been associated with increased cardiopulmonary mortality in the USA. We aimed to assess the relation between traffic-related air pollution and mortality in participants of the Netherlands Cohort study on Diet and Cancer (NLCS), an ongoing study. METHODS: We investigated a random sample of 5000 people from the full cohort of the NLCS study (age 55-69 years) from 1986 to 1994. Long-term exposure to traffic-related air pollutants (black smoke and nitrogen dioxide) was estimated for the 1986 home address. Exposure was characterised with the measured regional and urban background concentration and an indicator variable for living near major roads. The association between exposure to air pollution and (cause specific) mortality was assessed with Cox's proportional hazards models, with adjustment for potential confounders. FINDINGS: 489 (11%) of 4492 people with data died during the follow-up period. Cardiopulmonary mortality was associated with living near a major road (relative risk 1.95, 95% CI 1.09-3.52) and, less consistently, with the estimated ambient background concentration (1.34, 0.68-2.64). The relative risk for living near a major road was 1.41 (0.94-2.12) for total deaths. Non-cardiopulmonary, non-lung cancer deaths were unrelated to air pollution (1.03, 0.54-1.96 for living near a major road). INTERPRETATION: Long-term exposure to traffic-related air pollution may shorten life expectancy.


Assuntos
Substâncias Perigosas/efeitos adversos , Doenças Respiratórias/induzido quimicamente , Doenças Respiratórias/mortalidade , Emissões de Veículos/efeitos adversos , Idoso , Estudos de Coortes , Saúde Ambiental , Feminino , Humanos , Expectativa de Vida , Masculino , Pessoa de Meia-Idade , Países Baixos/epidemiologia , Estudos Prospectivos , Medição de Risco , Fatores de Risco , Fatores Socioeconômicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA