RESUMO
Multiple thoracic imaging modalities have been developed to link structure to function in the diagnosis and monitoring of lung disease. Volumetric computed tomography (CT) renders three-dimensional maps of lung structures and may be combined with positron emission tomography (PET) to obtain dynamic physiological data. Magnetic resonance imaging (MRI) using ultrashort-echo time (UTE) sequences has improved signal detection from lung parenchyma; contrast agents are used to deduce airway function, ventilation-perfusion-diffusion, and mechanics. Proton MRI can measure regional ventilation-perfusion ratio. Quantitative imaging (QI)-derived endpoints have been developed to identify structure-function phenotypes, including air-blood-tissue volume partition, bronchovascular remodeling, emphysema, fibrosis, and textural patterns indicating architectural alteration. Coregistered landmarks on paired images obtained at different lung volumes are used to infer airway caliber, air trapping, gas and blood transport, compliance, and deformation. This document summarizes fundamental "good practice" stereological principles in QI study design and analysis; evaluates technical capabilities and limitations of common imaging modalities; and assesses major QI endpoints regarding underlying assumptions and limitations, ability to detect and stratify heterogeneous, overlapping pathophysiology, and monitor disease progression and therapeutic response, correlated with and complementary to, functional indices. The goal is to promote unbiased quantification and interpretation of in vivo imaging data, compare metrics obtained using different QI modalities to ensure accurate and reproducible metric derivation, and avoid misrepresentation of inferred physiological processes. The role of imaging-based computational modeling in advancing these goals is emphasized. Fundamental principles outlined herein are critical for all forms of QI irrespective of acquisition modality or disease entity.
Assuntos
Pneumopatias , Enfisema Pulmonar , Humanos , Benchmarking , Pulmão/diagnóstico por imagem , Pneumopatias/diagnóstico por imagem , Respiração , Imageamento por Ressonância Magnética/métodosRESUMO
The application of stereology to lung casts and two-dimensional microscopy images is the gold standard for quantification of the human lung anatomy. However, these techniques are labor intensive, involving fixation, embedding, and histological sectioning of samples and thus have prevented comprehensive studies. Our objective was to demonstrate the application of stereology to volumetric multiresolution computed tomography (CT) to efficiently and extensively quantify the human lung anatomy. Nontransplantable donor lungs from individuals with no evidence of respiratory disease (n = 13) were air inflated, frozen at 10 cmH2O, and scanned using CT. Systematic uniform random samples were taken, scanned using micro-CT, and assessed using stereology. The application of stereology to volumetric CT imaging enabled comprehensive quantification of total lung volume, volume fractions of alveolar, alveolar duct, and tissue, mean linear intercept, alveolar surface area, alveolar surface area density, septal wall thickness, alveolar number, number-weighted mean alveolar volume, and the number and morphometry of terminal and transitional bronchioles. With the use of this data set, we found that women and men have the same number of terminal bronchioles (last generation of conducting airways), but men have longer terminal bronchioles, a smaller wall area percentage, and larger lungs due to a greater number of alveoli per acinus. The application of stereology to multiresolution CT imaging enables comprehensive analysis of the human lung parenchyma that identifies differences between men and women. The reported data set of normal donor lungs aged 25-77 yr provides reference data for future studies of chronic lung disease to determine exact changes in tissue pathology.NEW & NOTEWORTHY Stereology has been the gold standard to quantify the three-dimensional lung anatomy using two-dimensional microscopy images. However, such techniques are labor intensive. This study provides a method that applies stereology to volumetric computed tomography images of frozen whole human lungs and systematic uniform random samples. The method yielded a comprehensive data set on the small airways and parenchymal lung structures, highlighting morphometric sex differences and providing a reference data set for future pathological studies.