RESUMO
Tea is the one of the most popular non-alcoholic caffeinated beverages in the world. Tea is produced from the tea plant (Camellia sinensis (L.) O. Kuntze), which is known to accumulate fluoride. This article systematically analyzes the literature concerning fluoride absorption, transportation and fluoride tolerance mechanisms in tea plants. Fluoride bioavailability and exposure levels in tea infusions are also reviewed. The circulation of fluoride within the tea plantation ecosystems is in a positive equilibrium, with greater amounts of fluoride introduced to tea orchards than removed. Water extractable fluoride and magnesium chloride (MgCl2 ) extractable fluoride in plantation soil are the main sources of absorption by tea plant root via active trans-membrane transport and anion channels. Most fluoride is readily transported through the xylem as F- /F-Al complexes to leaf cell walls and vacuole. The findings indicate that tea plants employ cell wall accumulation, vacuole compartmentalization, and F-Al complexes to co-detoxify fluoride and aluminum, a possible tolerance mechanism through which tea tolerates higher levels of fluoride than most plants. Furthermore, dietary and endogenous factors influence fluoride bioavailability and should be considered when exposure levels of fluoride in commercially available dried tea leaves are interpreted. The relevant current challenges and future perspectives are also discussed. © 2020 Society of Chemical Industry.
Assuntos
Camellia sinensis/química , Fluoretos/análise , Fluoretos/metabolismo , Alumínio/análise , Alumínio/metabolismo , Disponibilidade Biológica , Transporte Biológico , Camellia sinensis/metabolismo , Parede Celular/química , Parede Celular/metabolismo , Exposição Dietética/efeitos adversos , Exposição Dietética/análise , Humanos , Folhas de Planta/química , Folhas de Planta/metabolismo , Medição de Risco , Solo/química , Chá/químicaRESUMO
Environmental and plant factors (soil condition, variety, season, and maturity) and exposure risks of aluminum (Al), manganese (Mn), lead (Pb), cadmium (Cd), and copper (Cu) in tea leaves were investigated. The concentrations of these metals in tea leaves could not be predicted by their total concentrations in the soil. During any one season, there were differences in Al, Mn, and Cd levels between tea varieties. Seasonally, autumn tea and/or summer tea had far higher levels of Al, Mn, Pb, and Cd than did spring tea. Tea leaf maturity positively correlated with the concentrations of Al, Mn, Pb, and Cd, but negatively with Cu. The calculated average daily intake doses (mg/ [kgâ¢d]) for these metal elements were 0.14 (Al), 0.11 (Mn), 2.70 × 10-3 (Cu), 2.80 × 10-4 (Pb), and 2.88 × 10-6 (Cd). The hazard quotient values of each metal were all significantly lower than risk level (=1), suggesting that, for the general population, consumption of tea does not result in the intake of excessive amounts of Al, Mn, Pb, Cd, or Cu. This study identified the factors that can be monitored in the field to decrease consumer exposure to Al and Mn through tea consumption. PRACTICAL APPLICATION: Environmental and plant factors influence aluminum and heavy metal accumulation in tea leaves. Consumers of tea are not ingesting excessive Al, Mn, Pb, Cd, or Cu. Trackable factors were identified to manage exposure levels.