Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Res ; 257: 119241, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38810827

RESUMO

Understanding and managing the health effects of Nitrogen Dioxide (NO2) requires high resolution spatiotemporal exposure maps. Here, we developed a multi-stage multi-resolution ensemble model that predicts daily NO2 concentration across continental France from 2005 to 2022. Innovations of this work include the computation of daily predictions at a 200 m resolution in large urban areas and the use of a spatio-temporal blocking procedure to avoid data leakage and ensure fair performance estimation. Predictions were obtained after three cascading stages of modeling: (1) predicting NO2 total column density from Ozone Monitoring Instrument satellite; (2) predicting daily NO2 concentrations at a 1 km spatial resolution using a large set of potential predictors such as predictions obtained from stage 1, land-cover and road traffic data; and (3) predicting residuals from stage 2 models at a 200 m resolution in large urban areas. The latter two stages used a generalized additive model to ensemble predictions of three decision-tree algorithms (random forest, extreme gradient boosting and categorical boosting). Cross-validated performances of our ensemble models were overall very good, with a ten-fold cross-validated R2 for the 1 km model of 0.83, and of 0.69 for the 200 m model. All three basis learners participated in the ensemble predictions to various degrees depending on time and space. In sum, our multi-stage approach was able to predict daily NO2 concentrations with a relatively low error. Ensembling the predictions maximizes the chance of obtaining accurate values if one basis learner fails in a specific area or at a particular time, by relying on the other learners. To the best of our knowledge, this is the first study aiming to predict NO2 concentrations in France with such a high spatiotemporal resolution, large spatial extent, and long temporal coverage. Exposure estimates are available to investigate NO2 health effects in epidemiological studies.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38279031

RESUMO

BACKGROUND: Cumulative environmental exposures and social deprivation increase health vulnerability and limit the capacity of populations to adapt to climate change. OBJECTIVE: Our study aimed at providing a fine-scale characterization of exposure to heat, air pollution, and lack of vegetation in continental France between 2000 and 2018, describing spatiotemporal trends and environmental hotspots (i.e., areas that cumulate the highest levels of overexposure), and exploring any associations with social deprivation. METHODS: The European (EDI) and French (FDep) social deprivation indices, the normalized difference vegetation index, daily ambient temperatures, particulate matter (PM2.5 and PM10), nitrogen dioxide, and ozone (O3) concentrations were estimated for 48,185 French census districts. Reference values were chosen to characterize (over-)exposure. Hotspots were defined as the areas cumulating the highest overexposure to temperature, air pollution, and lack of vegetation. Associations between heat overexposure or hotspots and social deprivation were assessed using logistic regressions. RESULTS: Overexposure to heat was higher in 2015-2018 compared with 2000-2014. Exposure to all air pollutants except for O3 decreased during the study period. In 2018, more than 79% of the urban census districts exceeded the 2021 WHO air quality guidelines. The evolution of vegetation density between 2000 and 2018 was heterogeneous across continental France. In urban areas, the most deprived census districts were at a higher risk of being hotspots (odds ratio (OR): 10.86, 95% CI: 9.87-11.98 using EDI and OR: 1.07, 95% CI: 1.04-1.11 using FDep). IMPACT STATEMENT: We studied cumulative environmental exposures and social deprivation in French census districts. The 2015-2018 period showed the highest overexposure to heat between 2000 and 2018. In 2018, the air quality did not meet the 2021 WHO guidelines in most census districts and 8.6 million people lived in environmental hotspots. Highly socially deprived urban areas had a higher risk of being in a hotspot. This study proposes for the first time, a methodology to identify hotspots of exposure to heat, air pollution, and lack of vegetation and their associations with social deprivation at a national level.

3.
Animals (Basel) ; 11(11)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34827969

RESUMO

In the 2019-2020 Australian bushfires, Kangaroo Island, South Australia, experienced catastrophic bushfires that burnt approximately half the island, with an estimated 80% of the koala population lost. During and after the event, rescued koalas were triaged at a designated facility and a range of initial data were recorded including rescue location and date, sex, estimation of age, body condition and hydration, and assessment of burn severity (n = 304 records available). Koalas were presented to the triage facility over a span of 10 weeks, with 50.2% during the first 14 days of the bushfire response, the majority of which were rescued from regions of lower fire severity. Burns were observed in 67.4% of koalas, with the majority (60.9%) classified as superficial burns, primarily affecting the limbs and face. Poor body condition was recorded in 74.6% of burnt koalas and dehydration in 77.1%. Negative final outcomes (death or euthanasia, at triage or at a later date) occurred in 45.6% of koalas and were significantly associated with higher mean burn score, maximum burn severity, number of body regions burnt, poor body condition score, and dehydration severity. The findings of this retrospective study may assist clinicians in the field with decision making when triaging koalas in future fire rescue efforts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA