RESUMO
Patients with cardiovascular disease benefit from cardiac rehabilitation, which includes structured exercise and physical activity as core components. This position statement provides pragmatic, evidence-based guidance for the assessment and prescription of exercise and physical activity for cardiac rehabilitation clinicians, recognising the latest international guidelines, scientific evidence and the increasing use of technology and virtual delivery methods. The patient-centred assessment and prescription of aerobic exercise, resistance exercise and physical activity have been addressed, including progression and safety considerations.
Assuntos
Reabilitação Cardíaca , Humanos , Exercício Físico , Terapia por Exercício , PrescriçõesRESUMO
Spaceflight-associated neuro-ocular syndrome (SANS) involves unilateral or bilateral optic disc edema, widening of the optic nerve sheath, and posterior globe flattening. Owing to posterior globe flattening, it is hypothesized that microgravity causes a disproportionate change in intracranial pressure (ICP) relative to intraocular pressure. Countermeasures capable of reducing ICP include thigh cuffs and breathing against inspiratory resistance. Owing to the coupling of central venous pressure (CVP) and intracranial pressure, we hypothesized that both ICP and CVP will be reduced during both countermeasures. In four male participants (32 ± 13 yr) who were previously implanted with Ommaya reservoirs for treatment of unrelated clinical conditions, ICP was measured invasively through these ports. Subjects were healthy at the time of testing. CVP was measured invasively by a peripherally inserted central catheter. Participants breathed through an impedance threshold device (ITD, -7 cmH2O) to generate negative intrathoracic pressure for 5 min, and subsequently, wore bilateral thigh cuffs inflated to 30 mmHg for 2 min. Breathing through an ITD reduced both CVP (6 ± 2 vs. 3 ± 1 mmHg; P = 0.02) and ICP (16 ± 3 vs. 12 ± 1 mmHg; P = 0.04) compared to baseline, a result that was not observed during the free breathing condition (CVP, 6 ± 2 vs. 6 ± 2 mmHg, P = 0.87; ICP, 15 ± 3 vs. 15 ± 4 mmHg, P = 0.68). Inflation of the thigh cuffs to 30 mmHg caused no meaningful reduction in CVP in all four individuals (5 ± 4 vs. 5 ± 4 mmHg; P = 0.1), coincident with minimal reduction in ICP (15 ± 3 vs. 14 ± 4 mmHg; P = 0.13). The application of inspiratory resistance breathing resulted in reductions in both ICP and CVP, likely due to intrathoracic unloading.NEW & NOTEWORTHY Spaceflight causes pathological changes in the eye that may be due to the absence of gravitational unloading of intracranial pressure (ICP) under microgravity conditions commonly referred to as spaceflight-associated neuro-ocular syndrome (SANS), whereby countermeasures aimed at lowering ICP are necessary. These data show that impedance threshold breathing acutely reduces ICP via a reduction in central venous pressure (CVP). Whereas, acute thigh cuff inflation, a popular known spaceflight-associated countermeasure, had little effect on ICP and CVP.
Assuntos
Voo Espacial , Ausência de Peso , Pressão Venosa Central , Humanos , Pressão Intracraniana , Masculino , Tonometria OcularRESUMO
Background Accurate assessment of cardiac output is critical to the diagnosis and management of various cardiac disease states; however, clinical standards of direct Fick and thermodilution are invasive. Noninvasive alternatives, such as closed-circuit acetylene (C2H2) rebreathing, warrant validation. Methods and Results We analyzed 10 clinical studies and all available cardiopulmonary stress tests performed in our laboratory that included a rebreathing method and direct Fick or thermodilution. Studies included healthy individuals and patients with clinical disease. Simultaneous cardiac output measurements were obtained under normovolemic, hypovolemic, and hypervolemic conditions, along with submaximal and maximal exercise. A total of 3198 measurements in 519 patients were analyzed (mean age, 59 years; 48% women). The C2H2 method was more precise than thermodilution in healthy individuals with half the typical error (TE; 0.34 L/min [r=0.92] and coefficient of variation, 7.2%) versus thermodilution (TE=0.67 [r=0.70] and coefficient of variation, 13.2%). In healthy individuals during supine rest and upright exercise, C2H2 correlated well with thermodilution (supine: r=0.84, TE=1.02; exercise: r=0.82, TE=2.36). In patients with clinical disease during supine rest, C2H2 correlated with thermodilution (r=0.85, TE=1.43). C2H2 was similar to thermodilution and nitrous oxide (N2O) rebreathing technique compared with Fick in healthy adults (C2H2 rest: r=0.85, TE=0.84; C2H2 exercise: r=0.87, TE=2.39; thermodilution rest: r=0.72, TE=1.11; thermodilution exercise: r=0.73, TE=2.87; N2O rest: r=0.82, TE=0.94; N2O exercise: r=0.84, TE=2.18). The accuracy of the C2H2 and N2O methods was excellent (r=0.99, TE=0.58). Conclusions The C2H2 rebreathing method is more precise than, and as accurate as, the thermodilution method in a variety of patients, with accuracy similar to an N2O rebreathing method approved by the US Food and Drug Administration.