Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 13(5): e1006358, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28542550

RESUMO

The process by which drug-resistant HIV-1 arises and spreads spatially within an infected individual is poorly understood. Studies have found variable results relating how HIV-1 in the blood differs from virus sampled in tissues, offering conflicting findings about whether HIV-1 throughout the body is homogeneously distributed. However, most of these studies sample only two compartments and few have data from multiple time points. To directly measure how drug resistance spreads within a host and to assess how spatial structure impacts its emergence, we examined serial sequences from four macaques infected with RT-SHIVmne027, a simian immunodeficiency virus encoding HIV-1 reverse transcriptase (RT), and treated with RT inhibitors. Both viral DNA and RNA (vDNA and vRNA) were isolated from the blood (including plasma and peripheral blood mononuclear cells), lymph nodes, gut, and vagina at a median of four time points and RT was characterized via single-genome sequencing. The resulting sequences reveal a dynamic system in which vRNA rapidly acquires drug resistance concomitantly across compartments through multiple independent mutations. Fast migration results in the same viral genotypes present across compartments, but not so fast as to equilibrate their frequencies immediately. The blood and lymph nodes were found to be compartmentalized rarely, while both the blood and lymph node were more frequently different from mucosal tissues. This study suggests that even oft-sampled blood does not fully capture the viral dynamics in other parts of the body, especially the gut where vRNA turnover was faster than the plasma and vDNA retained fewer wild-type viruses than other sampled compartments. Our findings of transient compartmentalization across multiple tissues may help explain the varied results of previous compartmentalization studies in HIV-1.


Assuntos
Farmacorresistência Viral , Infecções por HIV/virologia , Transcriptase Reversa do HIV/genética , HIV-1/enzimologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/fisiologia , Animais , DNA Viral/sangue , Feminino , Trato Gastrointestinal/virologia , HIV-1/genética , Humanos , Leucócitos Mononucleares , Linfonodos/virologia , Macaca mulatta , Especificidade de Órgãos , RNA Viral/sangue , Inibidores da Transcriptase Reversa/uso terapêutico , Vírus da Imunodeficiência Símia/genética , Vagina/virologia , Viremia
2.
J Virol ; 79(9): 5721-31, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15827187

RESUMO

Escape from specific T-cell responses contributes to the progression of human immunodeficiency virus type 1 (HIV-1) infection. T-cell escape viral variants are retained following HIV-1 transmission between major histocompatibility complex (MHC)-matched individuals. However, reversion to wild type can occur following transmission to MHC-mismatched hosts in the absence of cytotoxic T-lymphocyte (CTL) pressure, due to the reduced fitness of the escape mutant virus. We estimated both the strength of immune selection and the fitness cost of escape variants by studying the rates of T-cell escape and reversion in pigtail macaques. Near-complete replacement of wild-type with T-cell escape viral variants at an immunodominant simian immunodeficiency virus Gag epitope KP9 occurred rapidly (over 7 days) following infection of pigtail macaques with SHIVSF162P3. Another challenge virus, SHIVmn229, previously serially passaged through pigtail macaques, contained a KP9 escape mutation in 40/44 clones sequenced from the challenge stock. When six KP9-responding animals were infected with this virus, the escape mutation was maintained. By contrast, in animals not responding to KP9, rapid reversion of the K165R mutation occurred over 2 weeks after infection. The rapidity of reversion to the wild-type sequence suggests a significant fitness cost of the T-cell escape mutant. Quantifying both the selection pressure exerted by CTL and the fitness costs of escape mutation has important implications for the development of CTL-based vaccine strategies.


Assuntos
Epitopos de Linfócito T/imunologia , Infecções por Lentivirus/imunologia , Infecções por Lentivirus/virologia , Lentivirus de Primatas , Vírus Reordenados , Linfócitos T Citotóxicos/imunologia , Animais , Mapeamento de Epitopos , Produtos do Gene gag/genética , Epitopos Imunodominantes , Lentivirus de Primatas/genética , Lentivirus de Primatas/patogenicidade , Macaca nemestrina , Mutação , Vírus Reordenados/genética , Vírus Reordenados/patogenicidade , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA