Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Prog Cardiovasc Dis ; 83: 62-70, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38460898

RESUMO

The Post Covid-19 Condition (commonly known as Long Covid) has been defined by the World Health Organisation as occurring in individuals with a history of probable or confirmed SARS CoV 2 infection, usually within 3 months from the onset of acute Covid-19 infection with symptoms that last for at least two months which cannot be explained by an alternative diagnosis. Long Covid is associated with over two hundred recognised symptoms and affects tens of millions of people worldwide. Widely reported reductions in quality of life(QoL) and functional status are caused by extremely sensitive and cyclical symptom profiles that are augmented following exposure to physical, emotional, orthostatic, and cognitive stimuli. This manifestation prevents millions of people from engaging in routine activities of daily living (ADLs) and has important health and well-being, social and economic impacts. Post-exertional symptom exacerbation (PESE) (also known as post-exertional malaise) is an exacerbation in the severity of fatigue and other symptoms following physical, emotional, orthostatic and cognitive tasks. Typically, this will occur 24-72 h after "over-exertion" and can persist for several days and even weeks. It is a hallmark symptom of Long Covid with a reported prevalence of 86%. The debilitating nature of PESE prevents patients from engaging in physical activity which impacts functional status and QoL. In this review, the authors present an update to the literature relating to PESE in Long Covid and make the case for evidence-based guidelines that support the design and implementation of safe rehabilitation approaches for people with Long Covid. This review also considers the role of objective monitoring to quantify a patient's response to external stimuli which can be used to support the safe management of Long Covid and inform decisions relating to engagement with any stimuli that could prompt an exacerbation of symptoms.


Assuntos
Aptidão Cardiorrespiratória , Exercício Físico , Síndrome de COVID-19 Pós-Aguda , Humanos , COVID-19/complicações , Síndrome de COVID-19 Pós-Aguda/diagnóstico , Síndrome de COVID-19 Pós-Aguda/patologia , Síndrome de COVID-19 Pós-Aguda/terapia , Qualidade de Vida
2.
Front Bioeng Biotechnol ; 11: 1143248, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37214281

RESUMO

Introduction: Accurately assessing people's gait, especially in real-world conditions and in case of impaired mobility, is still a challenge due to intrinsic and extrinsic factors resulting in gait complexity. To improve the estimation of gait-related digital mobility outcomes (DMOs) in real-world scenarios, this study presents a wearable multi-sensor system (INDIP), integrating complementary sensing approaches (two plantar pressure insoles, three inertial units and two distance sensors). Methods: The INDIP technical validity was assessed against stereophotogrammetry during a laboratory experimental protocol comprising structured tests (including continuous curvilinear and rectilinear walking and steps) and a simulation of daily-life activities (including intermittent gait and short walking bouts). To evaluate its performance on various gait patterns, data were collected on 128 participants from seven cohorts: healthy young and older adults, patients with Parkinson's disease, multiple sclerosis, chronic obstructive pulmonary disease, congestive heart failure, and proximal femur fracture. Moreover, INDIP usability was evaluated by recording 2.5-h of real-world unsupervised activity. Results and discussion: Excellent absolute agreement (ICC >0.95) and very limited mean absolute errors were observed for all cohorts and digital mobility outcomes (cadence ≤0.61 steps/min, stride length ≤0.02 m, walking speed ≤0.02 m/s) in the structured tests. Larger, but limited, errors were observed during the daily-life simulation (cadence 2.72-4.87 steps/min, stride length 0.04-0.06 m, walking speed 0.03-0.05 m/s). Neither major technical nor usability issues were declared during the 2.5-h acquisitions. Therefore, the INDIP system can be considered a valid and feasible solution to collect reference data for analyzing gait in real-world conditions.

3.
PLoS One ; 17(10): e0269615, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36201476

RESUMO

BACKGROUND: The development of optimal strategies to treat impaired mobility related to ageing and chronic disease requires better ways to detect and measure it. Digital health technology, including body worn sensors, has the potential to directly and accurately capture real-world mobility. Mobilise-D consists of 34 partners from 13 countries who are working together to jointly develop and implement a digital mobility assessment solution to demonstrate that real-world digital mobility outcomes have the potential to provide a better, safer, and quicker way to assess, monitor, and predict the efficacy of new interventions on impaired mobility. The overarching objective of the study is to establish the clinical validity of digital outcomes in patient populations impacted by mobility challenges, and to support engagement with regulatory and health technology agencies towards acceptance of digital mobility assessment in regulatory and health technology assessment decisions. METHODS/DESIGN: The Mobilise-D clinical validation study is a longitudinal observational cohort study that will recruit 2400 participants from four clinical cohorts. The populations of the Innovative Medicine Initiative-Joint Undertaking represent neurodegenerative conditions (Parkinson's Disease), respiratory disease (Chronic Obstructive Pulmonary Disease), neuro-inflammatory disorder (Multiple Sclerosis), fall-related injuries, osteoporosis, sarcopenia, and frailty (Proximal Femoral Fracture). In total, 17 clinical sites in ten countries will recruit participants who will be evaluated every six months over a period of two years. A wide range of core and cohort specific outcome measures will be collected, spanning patient-reported, observer-reported, and clinician-reported outcomes as well as performance-based outcomes (physical measures and cognitive/mental measures). Daily-living mobility and physical capacity will be assessed directly using a wearable device. These four clinical cohorts were chosen to obtain generalizable clinical findings, including diverse clinical, cultural, geographical, and age representation. The disease cohorts include a broad and heterogeneous range of subject characteristics with varying chronic care needs, and represent different trajectories of mobility disability. DISCUSSION: The results of Mobilise-D will provide longitudinal data on the use of digital mobility outcomes to identify, stratify, and monitor disability. This will support the development of widespread, cost-effective access to optimal clinical mobility management through personalised healthcare. Further, Mobilise-D will provide evidence-based, direct measures which can be endorsed by regulatory agencies and health technology assessment bodies to quantify the impact of disease-modifying interventions on mobility. TRIAL REGISTRATION: ISRCTN12051706.


Assuntos
Fragilidade , Doença de Parkinson , Doença Pulmonar Obstrutiva Crônica , Humanos , Monitorização Fisiológica , Estudos Observacionais como Assunto , Modalidades de Fisioterapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA