Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Vis Exp ; (196)2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37335095

RESUMO

The tumor microenvironment (TME) is composed of a plethora of different cell types, such as cytotoxic immune cells and immunomodulatory cells. Depending on its composition and the interactions between cancer cells and peri-tumoral cells, the TME may affect cancer progression. The characterization of tumors and their complex microenvironment could improve the understanding of cancer diseases and may help scientists and clinicians to discover new biomarkers. We recently developed several multiplex immunofluorescence (mIF) panels based on tyramide signal amplification (TSA) for the characterization of the TME in colorectal cancer, head and neck squamous cell carcinoma, melanoma, and lung cancer. Once the staining and scanning of the corresponding panels are completed, the samples are analyzed on an image analysis software. The spatial position and the staining of each cell are then exported from this quantification software into R. We developed R scripts that allow us not only to analyze the density of each cell type in several tumor compartments (e.g. the center of the tumor, the margin of the tumor, and the stroma) but also to perform distance-based analyses between different cell types. This particular workflow adds a spatial dimension to the classical density analysis already routinely performed for several markers. mIF analysis could allow scientists to have a better understanding of the complex interaction between cancer cells and the TME and to discover new predictive biomarkers of response to treatments, such as immune checkpoint inhibitors, and targeted therapies.


Assuntos
Neoplasias de Cabeça e Pescoço , Neoplasias Pulmonares , Humanos , Microambiente Tumoral , Biomarcadores , Imunofluorescência , Biomarcadores Tumorais/metabolismo
2.
J Pathol Clin Res ; 7(1): 27-41, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32902189

RESUMO

Surgical resection of colorectal liver metastases combined with systemic treatment aims to maximize patient survival. However, recurrence rates are very high postsurgery. In order to assess patient prognosis after metastasis resection, we evaluated the main patho-molecular and immune parameters of all surgical specimens. Two hundred twenty-one patients who underwent, after different preoperative treatment, curative resection of 582 metastases were analyzed. Clinicopathological parameters, RAS tumor mutation, and the consensus Immunoscore (I) were assessed for all patients. Overall survival (OS) and time to relapse (TTR) were estimated using the Kaplan-Meier method and compared by log-rank tests. Cox proportional hazard models were used for uni- and multivariate analysis. Immunoscore and clinicopathological parameters (number of metastases, surgical margin, histopathological growth pattern, and steatohepatitis) were associated with relapse in multivariate analysis. Overall, pathological score (PS) that combines relevant clinicopathological factors for relapse, and I, were prognostic for TTR (2-year TTR rate PS 0-1: 49.8.% (95% CI: 42.2-58.8) versus PS 2-4: 20.9% (95% CI: 13.4-32.8), hazard ratio (HR) = 2.54 (95% CI: 1.82-3.53), p < 0.0000; and 2-year TTR rate I 0: 25.7% (95% CI: 16.3-40.5) versus I 3-4: 60% (95% CI: 47.2-76.3), HR = 2.87 (95% CI: 1.73-4.75), p = 0.0000). Immunoscore was also prognostic for OS (HR [I 3-4 versus I 0] = 4.25, 95% CI: 1.95-9.23; p = 0.0001). Immunoscore (HR [I 3-4 versus I 0] = 0.27, 95% CI: 0.12-0.58; p = 0.0009) and RAS mutation (HR [mutated versus WT] = 1.66, 95% CI: 1.06-2.58; p = 0.0265) were significant for OS. In conclusion, PS including relevant clinicopathological parameters and Immunoscore permit stratification of stage IV colorectal cancer patient prognosis in terms of TTR and identify patients with higher risk of recurrence. Immunoscore remains the major prognostic factor for OS.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Colorretais/patologia , Técnicas de Apoio para a Decisão , Genes ras , Neoplasias Hepáticas/diagnóstico , Mutação , Microambiente Tumoral/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Predisposição Genética para Doença , Hepatectomia , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/secundário , Masculino , Metastasectomia , Pessoa de Meia-Idade , Fenótipo , Valor Preditivo dos Testes , Estudos Retrospectivos , Medição de Risco , Fatores de Risco , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA