Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Elife ; 102021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34402427

RESUMO

Spatial boundaries formed during animal development originate from the pre-patterning of tissues by signaling molecules, called morphogens. The accuracy of boundary location is limited by the fluctuations of morphogen concentration that thresholds the expression level of target gene. Producing more morphogen molecules, which gives rise to smaller relative fluctuations, would better serve to shape more precise target boundaries; however, it incurs more thermodynamic cost. In the classical diffusion-depletion model of morphogen profile formation, the morphogen molecules synthesized from a local source display an exponentially decaying concentration profile with a characteristic length λ. Our theory suggests that in order to attain a precise profile with the minimal cost, λ should be roughly half the distance to the target boundary position from the source. Remarkably, we find that the profiles of morphogens that pattern the Drosophila embryo and wing imaginal disk are formed with nearly optimal λ. Our finding underscores the cost-effectiveness of precise morphogen profile formation in Drosophila development.


Assuntos
Padronização Corporal , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Modelos Biológicos , Animais , Difusão , Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Discos Imaginais/metabolismo , Transdução de Sinais , Fatores de Tempo , Asas de Animais/embriologia , Asas de Animais/metabolismo
2.
J Phys Chem Lett ; 11(8): 3136-3143, 2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-32227999

RESUMO

Due to large fluctuations in cellular environments, transfer of information in biological processes without regulation is error-prone. The mechanistic details of error-reducing mechanisms in biological copying processes have been a subject of active research; however, how error reduction of a process is balanced with its thermodynamic cost and dynamical properties remain largely unexplored. Here, we study the error reducing strategies in light of the recently discovered thermodynamic uncertainty relation (TUR) that sets a physical bound to the cost-precision trade-off for dissipative processes. We found that the two representative copying processes, DNA replication by the exonuclease-deficient T7 DNA polymerase and mRNA translation by the E. coli ribosome, reduce the error rates to biologically acceptable levels while also optimizing the processes close to the physical limit dictated by TUR.


Assuntos
Replicação do DNA/fisiologia , Modelos Biológicos , Biossíntese de Proteínas/fisiologia , Termodinâmica
4.
J Phys Chem Lett ; 9(3): 513-520, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29329502

RESUMO

An efficient molecular motor would deliver cargo to the target site at a high speed and in a punctual manner while consuming a minimal amount of energy. According to a recently formulated thermodynamic principle, referred to as the thermodynamic uncertainty relation, the travel distance of a motor and its variance are, however, constrained by the free energy being consumed. Here we use the principle underlying the uncertainty relation to quantify the transport efficiency of molecular motors for varying ATP concentration ([ATP]) and applied load (f). Our analyses of experimental data find that transport efficiencies of the motors studied here are semioptimized under the cellular condition. The efficiency is significantly deteriorated for a kinesin-1 mutant that has a longer neck-linker, which underscores the importance of molecular structure. It is remarkable to recognize that, among many possible directions for optimization, biological motors have evolved to optimize the transport efficiency in particular.

5.
J Phys Chem Lett ; 8(1): 250-256, 2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-27983853

RESUMO

Theoretical analysis, which maps single-molecule time trajectories of a molecular motor onto unicyclic Markov processes, allows us to evaluate the heat dissipated from the motor and to elucidate its dependence on the mean velocity and diffusivity. Unlike passive Brownian particles in equilibrium, the velocity and diffusion constant of molecular motors are closely inter-related. In particular, our study makes it clear that the increase of diffusivity with the heat production is a natural outcome of active particles, which is reminiscent of the recent experimental premise that the diffusion of an exothermic enzyme is enhanced by the heat released from its own catalytic turnover. Compared with freely diffusing exothermic enzymes, kinesin-1, whose dynamics is confined on one-dimensional tracks, is highly efficient in transforming conformational fluctuations into a locally directed motion, thus displaying a significantly higher enhancement in diffusivity with its turnover rate. Putting molecular motors and freely diffusing enzymes on an equal footing, our study offers a thermodynamic basis to understand the heat-enhanced self-diffusion of exothermic enzymes.


Assuntos
Modelos Biológicos , Simulação por Computador , Difusão , Temperatura Alta , Cinesinas , Cadeias de Markov , Proteínas Motores Moleculares , Movimento (Física) , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA