Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Assunto principal
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Genet ; 13: 809741, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35480326

RESUMO

Water buffalo (Bubalus bubalis), belonging to the Bovidae family, is an economically important animal as it is the major source of milk, meat, and drought in numerous countries. It is mainly distributed in tropical and subtropical regions with a global population of approximately 202 million. The advent of low cost and rapid sequencing technologies has opened a new vista for global buffalo researchers. In this study, we utilized the genomic data of five commercially important buffalo breeds, distributed globally, namely, Mediterranean, Egyptian, Bangladesh, Jaffrarabadi, and Murrah. Since there is no whole-genome sequence analysis of these five distinct buffalo breeds, which represent a highly diverse ecosystem, we made an attempt for the same. We report the first comprehensive, holistic, and user-friendly web genomic resource of buffalo (BuffGR) accessible at http://backlin.cabgrid.res.in/buffgr/, that catalogues 6028881 SNPs and 613403 InDels extracted from a set of 31 buffalo tissues. We found a total of 7727122 SNPs and 634124 InDels distributed in four breeds of buffalo (Murrah, Bangladesh, Jaffarabadi, and Egyptian) with reference to the Mediterranean breed. It also houses 4504691 SSR markers from all the breeds along with 1458 unique circRNAs, 37712 lncRNAs, and 938 miRNAs. This comprehensive web resource can be widely used by buffalo researchers across the globe for use of markers in marker trait association, genetic diversity among the different breeds of buffalo, use of ncRNAs as regulatory molecules, post-transcriptional regulations, and role in various diseases/stresses. These SNPs and InDelscan also be used as biomarkers to address adulteration and traceability. This resource can also be useful in buffalo improvement programs and disease/breed management.

2.
Physiol Plant ; 172(2): 669-683, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33305409

RESUMO

Black pepper (Piper nigrum L.; 2n = 52; Piperaceae), the king of spices, is a perennial, trailing woody flowering vine and has global importance with widespread dietary, medicinal, and preservative uses. It is an economically important germplasm cultivated for its fruit and the major cash crop in >30 tropical countries. Crop production is mainly affected by drought stress. The present study deals with the candidate gene identification from drought-affected black pepper leaf transcriptome generated by Illumina Hiseq2000. It also aims to mine putative molecular markers (namely SSRs, SNPs, and InDels) and generate primers for them. The identification of transcription factors and pathways involved in drought tolerance is also reported here. De novo transcriptome assembly was performed with trinity assembler. In total, 4914 differential expressed genes, 2110 transcriptional factors, 786 domains and 1137 families, 20,124 putative SSR markers, and 259,236 variants were identified. At2g30105 (unidentified gene containing leucine-rich repeats and ubiquitin-like domain), serine threonine protein kinase, Mitogen-activated protein kinase, Nucleotide Binding Site-Leucine Rich Repeat, Myeloblastosis-related proteins, basic helix-loop-helix are all found upregulated and are reported to be associated with plant tolerance against drought condition. All these information are catalogued in the Black Pepper Drought Transcriptome Database (BPDRTDb), freely accessible for academic use at http://webtom.cabgrid.res.in/bpdrtdb/. This database is a good foundation for the genetic improvement of pepper plants, breeding programmes, and mapping population of this crop. Putative markers can also be a reliable genomic resource to develop drought-tolerant variety for better black pepper productivity.


Assuntos
Piper nigrum , Secas , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Piper nigrum/genética , Transcriptoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA