Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Am J Physiol Endocrinol Metab ; 322(5): E436-E445, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35344393

RESUMO

The melanocortin 4 receptor (MC4R) plays an important role in the regulation of appetite and energy expenditure in humans and rodents. Impairment of MC4R signaling causes severe obesity. MC4R mainly couples to the G-protein Gs. Ligand binding to MC4R activates adenylyl cyclase resulting in increased intracellular cAMP levels. cAMP acts as a secondary messenger, regulating various cellular processes. MC4R can also couple with Gq and other signaling pathways. Therefore, the contribution of MC4R/Gs signaling to energy metabolism and appetite remains unclear. To study the effect of Gs signaling activation in MC4R cells on whole body energy metabolism and appetite, we generated a novel mouse strain that expresses a Gs-coupled designer receptors exclusively activated by designer drugs [Gs-DREADD (GsD)] selectively in MC4R-expressing cells (GsD-MC4R mice). Chemogenetic activation of the GsD by a designer drug [deschloroclozapine (DCZ); 0.01∼0.1 mg/kg body wt] in MC4R-expressing cells significantly increased oxygen consumption and locomotor activity. In addition, GsD activation significantly reduced the respiratory exchange ratio, promoting fatty acid oxidation, but did not affect core (rectal) temperature. A low dose of DCZ (0.01 mg/kg body wt) did not suppress food intake, but a high dose of DCZ (0.1 mg/kg body wt) suppressed food intake in MC4R-GsD mice, although either DCZ dose (0.01 or 0.1 mg/kg body wt) did not affect food intake in the control mice. In conclusion, the current study demonstrated that the stimulation of Gs signaling in MC4R-expressing cells increases energy expenditure and locomotor activity and suppresses appetite.NEW & NOTEWORTHY We report that Gs signaling in melanocortin 4 receptor (MC4R)-expressing cells regulates energy expenditure, appetite, and locomotor activity. These findings shed light on the mechanism underlying the regulation of energy metabolism and locomotor activity by MC4R/cAMP signaling.


Assuntos
Proteínas de Ligação ao GTP , Obesidade , Receptor Tipo 4 de Melanocortina , Animais , Ingestão de Alimentos , Metabolismo Energético , Proteínas de Ligação ao GTP/metabolismo , Locomoção , Camundongos , Obesidade/metabolismo , Receptor Tipo 4 de Melanocortina/genética
2.
Nutrients ; 12(4)2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-32316458

RESUMO

BACKGROUND: The current study intended to evaluate the feasibility of the application of continuous glucose monitoring to guarantee optimal intake of carbohydrate to maintain blood glucose levels during a 160-km ultramarathon race. METHODS: Seven ultramarathon runners (four male and three female) took part in the study. The glucose profile was monitored continuously throughout the race, which was divided into 11 segments by timing gates. Running speed in each segment was standardized to the average of the top five finishers for each gender. Food and drink intake during the race were recorded and carbohydrate and energy intake were calculated. RESULTS: Observed glucose levels ranged between 61.9-252.0 mg/dL. Average glucose concentration differed from the start to the end of the race (104 ± 15.0 to 164 ± 30.5 SD mg/dL). The total amount of carbohydrate intake during the race ranged from 0.27 to 1.14 g/kg/h. Glucose concentration positively correlated with running speeds in segments (P < 0.005). Energy and carbohydrate intake positively correlated with overall running speed (P < 0.01). CONCLUSION: The present study demonstrates that continuous glucose monitoring could be practical to guarantee optimal carbohydrate intake for each ultramarathon runner.


Assuntos
Glicemia/metabolismo , Carboidratos da Dieta/administração & dosagem , Carboidratos da Dieta/metabolismo , Corrida de Maratona/fisiologia , Monitorização Fisiológica/métodos , Fenômenos Fisiológicos da Nutrição/fisiologia , Adulto , Ingestão de Líquidos/fisiologia , Ingestão de Alimentos/fisiologia , Ingestão de Energia/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
3.
J Nutr ; 133(3): 752-7, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12612148

RESUMO

The aim of the present study was to determine the effects of dietary proteins on the oxidation of dietary carbohydrate and lipids in type II diabetic mice. KK-A(y) strain mice were provided free access to a high fat diet (30% of energy as fat) for an initial 4-wk period to induce diabetes. To reduce body weight gain, the mice were subsequently fed restrictive isoenergetic and isonitrogenous diets (35% of energy as protein and 5% as fat) based on either casein or soy protein isolate hydrolysate (SPI-H) for 4 wk. To measure exogenous carbohydrate and lipid oxidation, the mice were fed a diet containing (13)C-glucose or (13)C-triolein while they were in a respiratory chamber for 72 h. Postprandial energy expenditure was higher in the SPI-H than in the casein group; this difference was due to an increase in postprandial exogenous and endogenous carbohydrate oxidation. There were no differences in 24-h energy expenditure between dietary groups. Oxidation of exogenous carbohydrate tended to be higher (P = 0.054) in the SPI-H group during the 24 h of measurement. Fecal excretion of (13)C-glucose was lower but the excretion of lipid was higher in mice fed the SPI-H diet than in casein-fed mice. These results indicate that in type II diabetic mice, dietary SPI-H not only inhibits the absorption of dietary lipids and increases the absorption of dietary carbohydrates but also augments postprandial energy expenditure, which is accompanied by a postprandial increase in oxidation of dietary carbohydrates.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Carboidratos da Dieta/metabolismo , Proteínas Alimentares/administração & dosagem , Metabolismo Energético , Proteínas de Soja/administração & dosagem , Animais , Peso Corporal , Isótopos de Carbono/metabolismo , Caseínas/administração & dosagem , Carboidratos da Dieta/farmacocinética , Gorduras na Dieta/metabolismo , Gorduras na Dieta/farmacocinética , Ingestão de Energia , Fezes/química , Absorção Intestinal , Masculino , Camundongos , Oxirredução , Trioleína/administração & dosagem , Trioleína/metabolismo , Trioleína/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA