Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Histochem Cytochem ; 72(5): 309-327, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38725403

RESUMO

To clarify the cellular mechanism of cortical porosity induced by intermittent parathyroid hormone (PTH) administration, we examined the femoral cortical bone of mice that received 40 µg/kg/day (four times a day) human PTH (hPTH) (1-34). The PTH-driven cortical porosity initiated from the metaphyseal region and chronologically expanded toward the diaphysis. Alkaline phosphatase (ALP)-positive osteoblasts in the control mice covered the cortical surface, and endomucin-positive blood vessels were distant from these osteoblasts. In PTH-administered mice, endomucin-reactive blood vessels with TRAP-positive penetrated the ALP-positive osteoblast layer, invading the cortical bone. Statistically, the distance between endomucin-positive blood vessels and the cortical bone surface abated after PTH administration. Transmission electron microscopic observation demonstrated that vascular endothelial cells often pass through the flattened osteoblast layer and accompanied osteoclasts in the deep region of the cortical bone. The cell layers covering mature osteoblasts thickened with PTH administration and exhibited ALP, α-smooth muscle actin (αSMA), vascular cell adhesion molecule-1 (VCAM1), and receptor activator of NF-κB ligand (RANKL). Within these cell layers, osteoclasts were found near endomucin-reactive blood vessels. In PTH-administered femora, osteocytes secreted Dkk1, a Wnt inhibitor that affects angiogenesis, and blood vessels exhibited plasmalemma vesicle-associated protein, an angiogenic molecule. In summary, endomucin-positive blood vessels, when accompanied by osteoclasts in the ALP/αSMA/VCAM1/RANKL-reactive osteoblastic cell layers, invade the cortical bone, potentially due to the action of osteocyte-derived molecules such as DKK1.


Assuntos
Osso Cortical , Células Endoteliais , Hormônio Paratireóideo , Animais , Humanos , Masculino , Camundongos , Osso Cortical/efeitos dos fármacos , Osso Cortical/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Fêmur/efeitos dos fármacos , Fêmur/irrigação sanguínea , Fêmur/metabolismo , Imuno-Histoquímica , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Hormônio Paratireóideo/farmacologia , Porosidade
2.
J Oral Biosci ; 65(2): 175-185, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37088151

RESUMO

OBJECTIVES: We examined mice with gene deletion of Receptor activator of nuclear factor-κB (Rank) ligand (Rankl) to histologically clarify whether they contained progenitor cells committed to osteoclastic differentiation up to the stage requiring RANK/RANKL signaling. METHODS: The tibiae and femora of ten-week-old male wild-type, c-fos-/-, and Rankl-/- mice were used for immunohistochemistry and transmission electron microscopy (TEM). RESULTS: In Rankl-/- mice, we observed osteoclast-like giant cells, albeit in low numbers, with single or two nuclei, engulfing the mineralized extracellular matrix. TEM revealed that these giant cells contained large numbers of mitochondria, vesicles/vacuoles, and clear zone-like structures but no ruffled borders. They often engulfed fragmented bony/cartilaginous components of the extracellular matrix that had been degraded. Additionally, osteoclast-like giant cells exhibited immunoreactivity for vacuolar H+-ATPase, galectin-3, and siglec-15 but not for tartrate-resistant acid phosphatase, cathepsin K, or MMP-9, all of which are classical hallmarks of osteoclasts. Furthermore, osteoclast-like giant cells were ephrinB2-positive as they were near EphB4-positive osteoblasts that are also positive for alkaline phosphatase and Runx2 in Rankl-/- mice. Unlike Rankl-/- mice, c-fos-/- mice lacking osteoclast progenitors and mature osteoclasts had no ephrinB2-positive osteoclast-like cells or alkaline phosphatase-positive/Runx2-reactive osteoblasts. This suggests that similar to authentic osteoclasts, osteoclast-like giant cells might have the potential to activate osteoblasts in Rankl-/- mice. CONCLUSIONS: It seems plausible that osteoclast-like giant cells may have acquired some osteoclastic traits and the ability to resorb mineralized matrices even when the absence of RANK/RANKL signaling halted the osteoclastic differentiation cascade.


Assuntos
Subunidade alfa 1 de Fator de Ligação ao Core , Osteoclastos , Camundongos , Masculino , Animais , Osteoclastos/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Fosfatase Alcalina/metabolismo , Osteoblastos/metabolismo , Proteínas de Transporte/metabolismo , Células Gigantes/metabolismo , Ligante RANK/genética , Ligante RANK/metabolismo , Imunoglobulinas/metabolismo , Proteínas de Membrana
3.
J Oral Biosci ; 65(2): 163-174, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37088152

RESUMO

OBJECTIVE: Toll-like receptor 2 (TLR2), recognizes a wide variety of pathogen-associated molecular patterns such as lipopolysaccharides, peptidoglycans, and lipopeptides, and is generally believed to be present in monocytes, macrophages, dendritic cells, and vascular endothelial cells. However, no histological examination of osteoclasts, which differentiate from precursors common to macrophages/monocytes, has been performed in a non-infected state of TLR2 deficiency. The objective of this study was to examine the histological properties and function of osteoclasts in the long bones of 8-week-old male TLR2 deficient (TLR2-/-) mice to gain insight into TLR2 function in biological circumstances without microbial infection. METHODS: Eight-week-old male wild-type and TLR2-/- mice were fixed with paraformaldehyde solution, and their tibiae and femora were used for micro-CT analysis, immunohistochemistry, transmission electron microscopy, and real-time PCR analysis. RESULTS: TLR2-/- tibiae and femora exhibited increased bone volume of metaphyseal trabeculae and elevated numbers of TRAP-positive osteoclasts. However, the number of multinucleated TRAP-positive osteoclasts was reduced, whereas mononuclear TRAP-positive cells increased, despite the high expression levels of Dc-Stamp and Oc-Stamp. Although TRAP-positive multinucleated and mononuclear osteoclasts showed the immunoreactivity and elevated expression of RANK and siglec-15, they revealed weak cathepsin K-positivity and less incorporation of the mineralized bone matrix, and often missing ruffled borders. It seemed likely that, despite the increased numbers, TLR2-/- osteoclasts reduced cell fusion and bone resorption activity. CONCLUSION: It seems likely that even without bacterial infection, TLR2 might participate in cell fusion and subsequent bone resorption of osteoclasts.


Assuntos
Reabsorção Óssea , Osteoclastos , Camundongos , Masculino , Animais , Osteoclastos/metabolismo , Osteoclastos/patologia , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Diferenciação Celular , Reabsorção Óssea/genética , Reabsorção Óssea/metabolismo , Reabsorção Óssea/patologia , Imunoglobulinas/metabolismo , Proteínas de Membrana
4.
J Oral Biosci ; 64(4): 410-421, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36241157

RESUMO

OBJECTIVES: Interleukin-6 (IL-6) contributes to the regulation of functions in various tissues and organs. Even though IL-6 has been reported to modulate bone metabolism in previous studies, this finding is controversial. This study aims to evaluate the possible involvement of IL-6 in bone metabolism by examining the histological activity of osteoblasts and osteoclasts in the femora of Il-6 deficient (Il-6-/-) mice. METHODS: Eight-week-old male Il-6-/- mice and their wild-type littermates were fixed with a paraformaldehyde solution, and their femora were extracted for micro-CT analysis, immunohistochemistry, and real-time PCR analysis. RESULTS: Il-6-/- femora showed an increased bone volume/tissue volume (TV) but a reduced bone mineral density compared with the wild-type. Furthermore, the tissue-nonspecific alkaline phosphatase positive area/TV ratio, the expression of Runx2, Osterix, and Rankl, and the number of tartrate-resistant acid phosphatase-positive osteoclasts were all increased in the Il-6-/- mice. A considerable number of unmineralized areas within the bone matrix and abundant sclerostin-reactive osteocytes were observed in Il-6-/- femoral metaphyses but not in the wild-type. Interestingly, the gene expression of Cd206 was elevated in Il-6-/- femora, and many F4/80-positive macrophages/monocytes and CD206-immunoreactive macrophages in the primary trabeculae had migrated closer to the growth plate, where intense RANKL immunoreactivity was detected. These results suggest that, in an IL-6-deficient state, CD206-positive macrophages may differentiate into osteoclasts when in contact with RANKL-reactive osteoblastic cells. CONCLUSION: In a state of IL-6 deficiency, the population and cell activities of osteoblast, osteoclasts, and macrophages seemed to be facilitated, except for the reduced mineralization in bone.


Assuntos
Remodelação Óssea , Interleucina-6 , Camundongos , Masculino , Animais , Interleucina-6/genética , Remodelação Óssea/genética , Osteoclastos/metabolismo , Osteoblastos/metabolismo , Osso e Ossos/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA